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Here, any one of the three messages m; , m3 , m; , or m; m4 could be represented by the same binary sequence 0
1 0. Hence, the sequence 0 1 0 can not be decoded accurately. Such type of ambiguities should be removed.
Thus, the unique decipherability may be defined as follows :

Definition. A code is said to be uniquely decipherable (separable) if every finite sequence of code characters
correspond to at most one message.

For example, m, 0
my 10
ms 110
my 111

Here, encoding procedure establishes a one-to-one correspondence between messages and their code words,
without the necessity of having any space between successive messages.
If it is written as

0000010010001101000110100100100,
then this message will be uniquely decoded into
m '?11 my my my mp my my my my my my My my m3 m; my my my my m

I 26.18. SHANNON-FANO ENCODING PROCEDURE I

This method of encoding is directed towards constructing reasonably efficient separable binary codes for
sources without memory. Let [X ] be the €nsemble of the message to be transmitted and [P] be their
corresponding probabilities, i.e.
X1= [xl 3 X2 5 een ’xn]
[P]=[P1aP2’-~an] -
Now, a sequence c; of binary numbers of unspecified length n; can be associated to each message x; such
that— '
(i) No sequence of employed binary numbers ¢, can be obtained from each other by adding more binary
terms to shorter sequence.
(i) The transmission of the encoded message is ‘reasonably’ efficient, i.e. 1 and 0 appear independently
and with (almost) equal probabilities.
The Shannon-Fano encoding procedure can be explained by solving the following examples.
lllustrative Examples

Example 12. Apply Shannon’s encoding procedure to the following message ensemble :
(X1=[my,my,my, my)
[P1=10.4,0.3,0.2,0.1]

Solution.
Message Probability Encodedmessage Length
m 04 0 1
ny 0.3 10 2
m; 02 110 3
my 0.1 111 3
Average length 1.9

Step 1. Messages are first written in order of non-increasing probabilities. Then the set is partitioned into two
most equiprobable subsets {S;} and {S,}. Zero is assigned to each message in one subset and 1 to
each of the remaining messages.

Step. 2. The same procedure should be repeated for subsets of {S;} and {S,}. In this example, the subset
{8,} = {m,} cannot be partitioned further. But, the subset S, = {m, , m3 , m;} can be partitioned as
Sy, = {m,} and Sy, = {m3 , my}. So, assign 0 to message m, and 1 to each of the messages m; and m,.
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Step 3. The procedure is continued till each subset comtains only one message.
The entropy of the source is

=-[0.4log 0.4 +0.3 log 0.3 + 0.2 log 0.2 + 0.1 log 0.1]= 1.9 bits/message
The expected length is :

L=2p{m}n=04x1+03%x2+02x3+0.1x3 = 1.9. bits/symbol.

Example 13. A source without memory has six characters with following probabilities :
‘ A B C D E F
173 1/4 1/8 1/8 1712 1712

. Devise an encoding procedure with the prefix property giving minimum possible average length for the
trdnsmission over a binary noiseless channel. '

What is the average length of the encoded message ?
Solution. Proceeding as in Example 12, we obtain the solution as follows :

Characters Prob. (p) Code Code length (/) pxl
A 5, [ 1/3 ] 00 2 2/3
174
B 1;2 » 10 2 12
c 5| ! 100 3 38
D i P 101 3 318
E 110 3 /4
F 111 3 1/4
Average length (L) =Zp x I =2/3 + 1/2 + 3/8 + 3/8 + 1/4 = 29/12 bits/symbol. Ans,
| 26.19. A NOISELESS CODING THEOREM |

Theorem 26.7. Necessary and sufficient condition for the existence of an irreducible noiseless encoding
procedure with specified word length[n, , n, , ... , ny)is a set of positive integers [n, , n, , ..., ny] that can be
Sfound such that

i N
a I D "<

i=1

...(26.63)

where D is the number of symbols in encoding alphabet.
Proof. Condition is Necessary :

Obviously, two encoded messages x; and x; can have the same length, i.e. n; = n;
Let W; be the number of encoded messages of length n;. But, number of encoded messages with only one
letter cannot be larger than D. Therefore, ‘

W, <D. .(26.64)

Also, number of encoded messages of length 2, because of coding restriction, cannot be larger than
(D ~ W) D. Hence

W,<(D-W,)D=D*-W,D ..(26.65)
Likewise, W3 < [(D~-W,) D-W,] D=D*- W,D*- W,D ...(26.66)
Finally, if m is the maximum length of encoded words, it is concluded that .
W,<D"-W\ D" '-W,D" - . -W,_,D ...(26.67)
Now, dividing both sides of this inequality by D™ ,
- WuD "<t-W,D'-W,D*~...-W,_,D" ™Y
or ' WD '+ W,D 2+ .+ W, D™ Viw D "<
or ’?1 WD <1 ..(26.68)

where m is the maximum length of any message.
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Now, this inequality can be written as
W, D '+ W, D 4 4+ W, D "< ...(26.69)
i1 '

1,1 i 1.1 . _—_
or . [D+D+...+Wlnmes]+ D2+D2+...+W2umcs]+ ...... + —’;+———+...W,,,t1mes

Each term in the bracket of eqn (26.69) corresponds to a specified message length such as in the first
bracket, W) message is of length 1, in second bracket W, message is of length 2, and so on. ‘
Hence the total number of messages are . '
COW W+ + W, =N ...(26.70)
Terms in W, correspond to encoded messages of length k. '
Consider later terms as ZD™ " when the summation takes place over all those terms with n; = k. Hence by a
simple re-arrangement of terms, it can be equivalently written as

m _ N n
L Wpl= £ D™ (26.71)
j=1 i=1
m i N _
Therefore, '21 WD/ = ‘E] D™ Mgl ..(26.72)
Jj= 1=
The desired set of positive integers [n; , ny , ... , ny] satisfy the inequality (26.63).
Condition is sufficient : '
We have to show that the condition
fl WD =W, D '+ W,D 2+ ...+ WD "<1 -(26.73)
=
is sufficient for the existence of desired codes.
Since the terms W,D™ ' , W,D~ 2., WD "areall positive, each term must be less than 1. Thus, it can
be concluded that
WD 'SlorW,<D, (26.74)
and WD '+ WD < 1or W, <D (D -Wy) ..{(26.75)

and so on. Since these are the conditions we have to satisfy in order to guarantee that no encoded message can
be obtained from any other source by the addition of a sequence of letters of the encoding alphabet.
As an application of this theorem, let D be a binary set, i.e. A= [a;, a;], then the encoding theorem
requires that
N ‘
) El 2"<1 ...(26.76)
, =
As an application of the foregoing, consider the existence of a separable code book having N words of
equal length n. The noiseless coding theorem suggests that such codes exist if

N
I D "<l,wheremy=m=...=ny=n. ..(26.77)
=
or D"+D "+...+NtimesS1 or ND""<1
or logN+(—n)logD<0 or logN<nlogD. ...(26.78)

This relation between N, n and D guarantees the existence of desired codes.
This completes the proof of the theorem.
llustrative Examples

Example 14. There are 12 coins, all of equal weight except one which may be lighter or heavier. Using
concepts of information theory, show that it is possible to determine which coin is the odd and indicate
whether it is lighter or heavier. :

Solution. The principle ‘maximum information is received when the events are equally likely’ can be
used here to seek the information about the odd coin.
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Take an ordinary weighing balance. Assuming complete ignorance about the identity of the odd coin, and
whether itis lighter or heavier, one has to identify 24 equally likely possibilities of placing a coin on either pan.
. Obviously, this will require log, 24 bits of information. ,

At each weighing, try to generate the maximum possible amount of information.

For one weighing, let

pL = probability that balance tips to left
Pr = probability that balance tips to right
p = probability that balance does not tip to any side

Thus, the information generated in this weighing is given by

 H=-plogp,—prlogpr—plogp :

H will be maximum if probabilities are equal. From this, one can conclude that weighing should be done in
such a way that tipping to left, balancing, and tipping to right are equally probable events.

Put n coins in each of the left and right pans, and 12 — 2n are weighted. Therefore,

p=(12-2n)/12,p; =pr=m/12,
and hence p = p; = pr = 1/3, when n = 4. Thus, it is possible to divide 12 coins into 3 groups, say G, , G, , G3
consisting of four coins each. Then, place two of them, say G; and G, , in different pans of the balance. Now,
two cases will arise :

Casel. Pans balance each other.

CaselIl. If pans do not balance, observe which one is heavier.

In the first case, odd coins lie in the third group (G3). In the second case, remove one of the groups, say
G, , from the pans and set G, in place of G,. If pans now balance each other, odd coins lie in the first group
(G)), otherwise in the second group (G,). Also, observations noted in this case and in the second case earlier,
reveal whether the odd coin is heavier or lighter.

Up tothis stage, it is decided which one of the groups G, , G, , G; contains the odd coin. Denote this group
by G = {c,, 3, c3,c4} where the letter ‘c’ denotes the coin.

Now, put two coins, say ¢, and c; of group G in different pans of the balance. Again, two cases will arise :

Case I. If pans balance each other, then the odd coin is either c; or ¢4.

Case I1’ If pans do not balance, then the odd coin is either c; or c;.

In either case, replace one of the coins, say ¢ by c3. If pans now balance, the Case I’ will decide that ¢, is
the odd coin whereas Case II" will decide that ¢; is the odd coin. On the other hand if pans do not balance each
other, then the Case I’ decides that c3 is the odd coin whereas Case I’ establishes that c, is the odd coin.

Finally, the coin being lighter or heavier is an immediate consequence observed after weighing.

lllustrative Example -

Example 15. Suppose we are given n coins which look quite alike, but of which some are false. The false
coins have smaller weight than the genuine ones. The weights o and B (B < ) of both the genuine and false
coins are known. A scale is given by means of which any number less than (< n) of coins can be weighted
together. Thus, we select an arbitrary subset of the coins and put them together on the scale; then the scale
shows us the total weight of these coins. Find the lower bound of the minimal number a(n) of weighings by
means of which the genuine and false coins can be separated.

Solution. Since the subset of the coins consisting of the false coin may be any of the 2" subsets of the set of
all coins, the amount of information needed is log, (2") =n.

On the other hand, if we put k < n coins on the balance, the number of false coins among them may have
the values 0, 1, ..., k and thus the amount of information given by each weighing cannot exceed, i.e.

log, (k+1)<log, (n+1).

Hence, r weighings can give us at most r log, (n + 1) bits, and thus to obtain the necessary amount of

information is (n bits) it is necessary that r log, (n + 1) < n. That is,

a(n) 2n/log, (n+1).
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SELF-EXAMINATION QUESTIONS
. Write a critical essay on information theory emphasizing the basic concepts ?
. Define entropy function and establish its formal requirements.

. (a) Define the different entropies for a two part communication system and calculate them for a discrete channel with
independent input-output.
(b) Give a measure for mutual information Ax, y) and show that
Ix, ) =)+ IKy) - IKx, y)
. Show that the entropy function is maximum when mutually exclusive events are equiprobable. Show also that the
partitioning of events into sub-gvents cannot decrease the entorpy of the system. [Delhi (OR). 92]

. Give a brief account of memoryless schemes.
. Show that all possible sets of binary codes with the prefix property for encoding the message ensemble (my , mz , ms)in
words not more than three digits long.

. Let Sbe the discrete sources without memory with a communication entropy H (x) and a noiseless channel with‘capacity
C bits per message. Show that it is possible to encode the output S so that, if hte encoded messages are transmitted
through the channel, the rate of transmission of information approaches C per symbol as closely as desirable.

n n
withZ p; =X g;.
i=1 i=1

. An alphabet consists of four letters A, B, C, D with respective probabilities of transmission 1/3, 1/4, 1/5, 1/6. Find the
average amount of inforamtion associated with the transmission of a letter.

EXAMINATION PROBLEMS
. Evaluate the entropy associated with the following probability distribution :
Event: A B C . D
Probability : 12 1/4 118 1/8

. Let X be a discrete random variable taking vlaues xy, s, ..., x, with probability P(X=x)=px.k=1,2, ...,
n; px20, Zpc= 1. Define the entropy !/ (py , p2 , ..., pn) Of the probability distribution to X and prove that

- p
”(P1-P2----an)=”(P1-Pz:---an-Z-Pn-1vPﬂ)‘*’(Pﬂd"’Pn)”( Pn-1 . ]

Pn+Pn-1’ Pn+Pn-1
. If Hdenotes the entropy function, then prove that

91 G m
pn'pn'”

H(P1.Pz-..-,pN,th,Qz.m.qm)=H(p1,pg.....p,,)+p,,H(— =, ..., o

where p, = kg qx. Verify the formula, defining additivity of entropies, for events A, B, Cwith probabilities 1/5, 4/15, 8/15

respectively.
. The two finite probability schemes are givenby (py, p1, ..., Pn) and (qy , G2, ... , Qn). Show that

n n
-2 Pclog qes - Z Pxlog px

with equelity if and only it p; = g;, forall i
{Hint. Since log x < x— 1if x= 1, therefore log (v p) = (q/p) — 11t p;= qi Xi= q/p;.

n n n
Thus, ,.3'5‘ pilog(q/p) s Z pi(q/pi-1)= Oforpi=g; ie. X pijloggi< X pjlogp;

n n
or : -% piloggiz-x pjlogpi]

. Evaluate the average uncertainty associated with the sample space of disjoint events A, B, C, where
PA)=1/5, AB)=4/15, AC)=8/15.
. Apply Shannon-Fano encoding procedure to the following set of messages :
[m my mg my ms mg my  mg]
{174 1/4 1/8 1/8 1/16 1/16 1/16 1/16}]
{\Iso, determine the entropy (H) of the original source and average length (L) of the encoded meassage.
Ans. m m M my ms mg my mg - I=
00 01 100 101 1100 1101 1110 111 H=275bits, L =2.75]
. Apply Shannon-Fano encoding procedure to the following message :
' K=x % X3 X X X X X X
[P)=049 0.14 014 0.07 0.07 0.04 0.02 0.02 0.01
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[Ans.x; x2 xq X X X Xy o
0 100 101 1100 1101 1101 11110 111114

L = 3 bits/symbol, H=1.60+ 2 log 5 - (1.40) log 7]
8. Write a short note on entropy. Show that the antropyofmefoﬁowlngeventsisz (1/2)” -2
Event(x;) : X) X2 X; Xn-1 Xp
Prob.p (x)) 12 1/4 l/Zi_ R VY,
[Hint. Here we have
1. . 1 . n
. p,~=;i./=1,2, ..n-1; and p,,=5"jsuchthat,§‘ pi=1.

The entropy function His defined as
n n=1
H i P2 ..., P ==L Pilog pi=-X p;log pi- pnlog pn

=% Doy 7100 ()

=73 (;)'09(—,)"(,,.)'092(2" )="%] 1)+~ VG [ bg2=1]

i.2 3 n-1l n-1
= 24-22+23+.,. 2"_,}4'2”_‘ ()]
1 1.2 Lo=1] n-1 o
or sHPLP2 o PREl S+ + b — L — (i)
2 (P1 P2 () 22 23 2,, } 2,,

Subtracting (ii) from (i), we get

1 1 n-1 2(n-1
H(M»Pz....Pn)-%H(sz.....Pn)- E"é*"'* . )+(:n_1- (’;" )]
1 1
or EH(PLPZ s Pn) = (+—+ F—,)-" )"
or Hpy, P2, ..., Pp)=2 "g;
9. Prove that H(py, pz, ..., Pn) S loga n, and equality holds if and only if py = 1/n, k=1, 2,3, .., n

"
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CLASSICAL OPTIMIZATION TECHNIQUES
(Lagrangian Method & Kuhn-Tucker Conditions)

27.1. INTRODUCTION - }

In this chapter, we shall concern ourselves with the classical theory of optimization. This theory deals with the
use of differential calculus to determine the points of maxima and minima for both unconstrained and
constrained continuous functions. Although, in general, the classical optimization techniques are not suitable
for obtaining numerical solutions except for relatively simple problems, the underlying theory gives the basis
for devising most of the non-linear programming algorithms.

We have introduced such topics in this chapter which include : the development of necessary and
sufficient conditions for locating the extreme points for unconstrained problems, the treatment of the
constrained problems using the Lagrangian methods, and the development of the Kuhn-Tucker conditions for
the general problem with inequality constraints.

I 27.2. UNCONSTRAINED PROBLEMS OF MAXIMA AND MINIMA I

We shall discuss the problem of determining the extreme points (the points of maxima and minima) of an
unconstrained type of continuous function.
Mathematically, a function f(x) has a maximum at a point xo if for| & | sufficiently small

Sflxo+h) —f(xp) <O0.
Similarly, a function f(x) has a minimum at a point xg if
f(xo+ h) —f(x0) > 0.

For example, Fig. 27.1. illustrates a continuous function f(x) defined on the interval (a , b). The points
Xy . X2, X3, x4 and xg (not xs) represent all the points of maxima and minima (called the stationary or critical

puints) of f(x). These include x; , x3 and xg as the Point of
points of maxima, and x; and x4 as the points of ¢y, 4 Inflection . Max
minima.

Global (absolute) maximum : Max

Since  f(xe) = max. { f(x1), f(x3) ,f(x6)} ,

Sfixg) is called a global or absolute maximum.

e - - - - e -

Local (relative) maxima :

On the other hand, f(x,) and f(x3) are called
local or relative maxima.
Similarly, f(x,) is a local minimum while f(x,) is
a global minimum.

Further, it should be noted that the point A corresponding to f(xs) is called the point of inflectian.

Now, in the following section, it will be shown how extreme points can be determined for the general case
of an n-variable function f(x), x={x; ,x,, ... , x,}. Theorem 27.1 gives the necessary conditions for the
existence of an extreme point and Theorem 27.2 proves the sufficiency conditions. We shall assume

Bl o i
Ob = - - e

xy

D - - - -
F----
&
X
&

Fig. 27.1
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throughout this section that both the first and the second partial derivétives of f(x) are continuous. The proof of
the following theorems will be accomplished through the use of Taylor’s theorem.

27.2-1. Some Important Theorems

Theorem 27.1. A necessary condition for a continuous function f{x) with continuous first and second
partial derivatives to have an extreme point at X is that each first partial derivative of f{x), evaluated at x,,
vanish, that is :

Vf(x)=0
whereV = [ o o of

, s rns is the gradient vector.
ox; ' Ox, ox,, ) &

Proof. By Taylor’s theorem, for0 <8< 1.
fxo+h) - f(x0)=Vf(x)) h+ V2h"Hh Ix,,-c-eh

whereh=(h; , hy, ..., h;, ..., h,) and | h; | is small enough forallj=1,2, ... ,h.

For small | h; |, the remainder term 1 (h’ Hh) is of order hjz and hence it will tend to zero as h; — 0.
Thus, '

..(27.1)

~ f(xo+h) —f(xo) = Vf(x0) h + O (h?) -(27.2)
= =[5 X, X If(x) 9(x)
= Vf(xp) h = [h, o, +h, ox, +...+h, ax,, +...+h, o, ]hxo

Suppose that xo is an extreme point. Now we shall prove the theorem by contradiction.
If possible, let us suppose that one of the partial derivatives, say pth, does not vanish, i.e. df(x)/9x, # 0.
Then (27.2) becomes

%0 + )~ i) = o0 213)
(2
Since QM # 0, either af—(xi) <0 or af—(@ >0.
ox, 0x, 0x,
of (xo)

Now, suppose > 0. Then the L.H.S. of (27.3) will have the same sign as h,, , that is,

ox,

(i) f(%o + h) — f(xo) > O when h, > 0, and (ii) f(xo + h) — f(xo) < 0 when h, < 0.

This contradicts the assumption that X is an extreme point. The argument when [9f (xg)/ ox,] < Ois similar
to the given above. Thus, we may conclude that when any of the partial derivatives are not identically equal to
zero at Xo, the point xo is not an extreme point. Thus, it follows that for xg to be an extreme point, it is
necessary that

Vf(x0)=0. -(27.4)

This completes the proof of the theorem.

The condition (27.4) says that the partial derivatives of f(x) with respect to X, (p=1,2, ..., n) must vanish
at the extreme points xg.

Further, if we have the functions of one variable (say y) only, the above condition will reduce to

fo0=0 or (—f’aﬂ%:o.

_ It is also important to note that the above conditions are also satisfied for the cases other than extreme
point. These include, for example, inflection and saddle points. Consequently, the given conditions are

necessary but not sufficient for determining the extreme points. Thus it is more reasonable to call the points
obtained from the solution of

Vix)=0
as stationary points.
In the next theorem, we shall derive the sufficiency conditions for x to be an extreme point.
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Theorem 27.2. A sufficient condition for a stationary point X to be an extreme point is that the Hessian
matrix H evaluated at xy is, .

(i) negative-definite when Xo is a maximum point, and
(ii) positive-definite when Xq is minimum point.
Proof. By Taylor’s theorem, for 0 < 8 < 1, we have .
fRo+h) —f(xe)= V(o) h+ VoW Hh | o .
Since X, is a stationary point, then by preceding theorem

_ V£(x0) =0.
Thus, f(xo+h)—f(xg)=V2h ”hlx.,+e..
Let xo be a maximum point, then by definition

f(xo +h) <f(x0)
for all non-null h. This implies that for xo to be a maximum.

VoW Hhl o <0 or WHhI <0 : (27.5)
Writing the quadratic form h’ H hin expanded form, we have
2
% % gL
i=1 j=1 ax,- axj

f(x)

ax,- axj

<0.

x=Xg+6h

is continuous in the neighbourhood of xo ,

o) Fait]
0x; 0% |x=x, 0%; 0%X; | x=xy+6h
Consequently, h” H h must yield the same sign when evaluated at both xg and xo + 6h. Thus, from (27.5),
we have

However, since the second partial derivative

will have the same sign as

hHh| <O
X=X0

Sinceh’ Hh | = defines a quadratic form, this expression (and hence W Hh| x=xg+ O ) is negative if,
and only if, the Hessian matrix H is negative-definite at xo. This completes the proof for maximization case.

A similar proof can be established for the minimization case to show that the corresponding Hessian
matrix H is positive definite at Xq.

27.2-2. lllustrative Example
Example 1. Find the maximum or minimum of the function
FX)=xf +xF +x3 = 4x; — 8xy — 1203 + 56.

Solution. Applying the necessary condition

_ 9 9 9 _
Vf(x)=0 or ( 3o ]1(x)—(0, 0,0),

this gives
O o —aco Kooy —8=0 L o2y-12=
o, =2x;—4=0, o, 2x, - 8=0, s 2x;—-12=0.
The solution of these simultaneous equations is given by Xo = (2,4, 6) which is the only point that

satisfies the necessary conditions.

Now, by checking the sufficiency condition, we must determine whether this point is a maximum or
minimum.,

The Hessian matrix, evaluated at (2, 4, 6), is given by
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(3 & 9]

axlz ox; 0x,  Ox, dx3

2 2 2
dxdx;  dx, X 0X3

SoN
oNo

NOo O
_—

2
¥ Fr If
| 9x3 0x;  Ox3 Oxy ax32 ]
The principal minor determinants of H :

. 2 00
IZI,gg,andOZO
00 2

have the values 2, 4 and 8, respectively. Thus, each of the principal minor determinants is positive. Hence H is
positive-definite. Therefore, the point (2, 4, 6) yields a minimum of f(x).

Corollary. If the Hessian of a function f(x) is indefinite when evaluated at the point xo, where the
necessary conditions are satisfied, then the point xg is not an extreme point.

The proof is easy. So it is left as an exercise for the readers.

27.2-3. How to Determine Sufficient Conditions when H is Semi-definite

First, we shall consider the case for single variable functions. The sufficiency condition established by
Therem 27.2 reduces to the following cases. Given ygis a stationary point, then considering the Hessian matrix
with one element,

(i) f” () <0 is a sufficient condition for maximum. (i) f” () >0 is a sufficient condition for
minimum. :

It must be noted that in the single variable function, if f* (y,) vanishes, the higher order derivatives must
be investigated, and then we reach the desired conclusion by applying the result of the following theorem :

Theorem 27.3. Given a function f(y), if at a stationary point y, the first (n — 1) derivatives vanishes and

) #0,thenaty=yq, f(y) has : :
(i) aninflection point if nis odd, and (ii) maximum if f* (yo) < 0 and a minimum if f™ (yo) > .
The proof of this theorem is given in undergraduate calculus.
For example, we consider two functions (i) f(y) = y4 () g(y) = y3.
Forf(y) = y“ ,we have f’(y) = 4y3 =0, which gives y, = 0 as stationary point.
Now O =20 =0.
But f4 (0) =24 > 0, hence yo = 0 is a minimum point [see Fig. 27.2 (i)].
Forg()=y,g'() =3y’ =0.
This also gives yp = 0 as a stationary point. Since g(3) (0) =6 # 0, hence yo = O is an inflection point.

a(y) 1

4 (y) ‘
r fy)=y gly) =y3

o) —Y ‘ &) —>

Fig. 27.2 () Fig. 27.2 (i)
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We now return to the case of functions of several variables. Many attempts have been made to develop
sufficient conditions for extreme points in several variable case. One attempt was made by Lagrange as an
extension of arguments of Theorem 27.3 for one-dimensional case. '

He argued that if the second order terms are semi-definite, the third order terms must vanish and fourth
order terms would give the required information. If the fourth order terms are semi-definite, we must then
investigate higher order terms. However, Peano developed a counter example to this argument. Peano s
counter example is given below.

Example 2. Consider f(x) = (xzz- - X1)2 = x,z - lexzz + x; .
Let us apply Lagrange s argument. The necessary conditions are

o _ 2 (x —x3) =0, %=4x23-—4x;xQ=0.

ox 1 - 0.
The necessary conditions are satisfied along the curve x; = xZ. The second order terms are
¥ _ of Ff _ 192 2 2
5;?— ' 9m axz——4x2, 53— l%xz —4x,=8x; (since x; =x3)
: . 2 -4x
The Hessian H, is given by 2
- 4x2 8Xz

which can be easily seen to be positive ‘semi-definite for any x,. Lagrange argued that the third partial
derivatives must all be zero since the Hessian matrix, H, is semi-definite. But, one of the third order terms

a3
_LE -4,
dx; 0x;
Since this term does not vanish, Lagrange would argue that x; = xzz is not a minimum. However, we can

see that f{x) cannot be negative, but is zero only when x, = xZ , and is positive for any other value of x; and x,.

We should note that the solution obtained is not a proper minimum.
When Lagrange’s argument was shown to be erroneous, Serret modified the argument. Serret concluded
that we should investigate higher-order terms only for those values of k; for which the quadratic formh’ H h is

zero. However, Peano’s second counter example also proved this conclusion false.
Peano’s Second Counter Example : Consider : :

FOX) = (6 - x) (F = 20) = 268 = 3xyx; + 37
o 22 _n O _43_ _
axl = 3XZ + 411 =0, axz = 412 6x,x2 =0.

The point (x; =0, x; =0) satisfies the necessary conditions shown above. The Hessian evaluated at
x; =0, x,=0is given by
_[4 O
#=[o o]
which is negative semi-definite. .

Let us now expand f{x; , x) in a Taylor’s series about (x; =0, x, = 0), we obtain

az 3 az s az s
f(xl+h,X2+k)=‘—l"h2—'ﬂ—x-l—2—x-zl +hk__'m). +_1';k2 f(xlzxZ) ...
2! ox| 0.0 ox; dx, 0.0 2! a2  loo

The second order term, 2k, is positive for all h and kexcept h =0. Following Serret’s argument, we look
at the third order terms, but only for the value of k where the second order term becomes zero, i.e., h=0.

The third order terms are given by
1 2
31 (- 18hK°)
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which becomes zero when 4 = 0. Now investi gating the fourth order terms we obtain
foa+h, 0+ k) ~fG, %) g o=+ 30 + K + ...

Applying Serret’s argument, we see that when h = 0 (that is, when second order terms vanish), the form is
positive-definite and consequently, the point (0, 0) is a minimum. However, we note that for x; < x22 < 2x; the
function is negative, and for x22 <xj;or x22 > 2x; the function is positive, and consequently the point (0, 0) is a saddle
point, since it decreases for all x; in the range x, < x22 < 2x, and increases in the range x—} < x; and x22 > 2xy. Thus,
Serret’s argument is proved erroneous.

Finally, this problem was resolved by Scheffer. To apply his arguments, we first need to break the problem
into several one-dimensional optimization problems. Rewriting the Taylor’s series

‘ J(xo +h) = f(Xo) = G(X) + Ry(xg + 6h , x9).

Suppose xg is a stationary point. We select one element of the vector h, say 4, , to be constant, and allow all
other elements of h to vary so that | k; | < h,. The minimum of G,(xq) with respect to these A; is determined over the
(n—1) dimensional space. This minimum is called G,(xp)". This procedure is repeated for each
hi,i=1,2, [TR SR (X

Then we shall conclude the following results :

() ¥ min G,(xo) is positive, then X is a minimum, because f(x¢+h) —f(x0) > 0.

(&) If some G (%)’ are positive and others are negative, then X is not an extreme point.

(#) ¥f min G,(x)" is zero, then n is increased by one and the entire process is repeated as above.

Note. For full discussion of above material, the interested students are advised to see “Theory of Maxima and Minima” by H.,
Hancock, New York,; Dover, 1950.

I 27.3. CONSTRAINED PROBLEMS OF MAXIMA AND MINIMA 1

In this section, we shall deal with the problem of optimization of continuous functions when side conditions or
constraints are placed on the variables. These constraints may be in the form of equation or inequality. We
shall discuss the case of equality constraints in Section 27.4 and the other case of inequality constraints in Section
27.5.

We may point out the need for this discussion by the variety of systems limited by constraints. The amount
of stock in an inventory system is limited by the size of storage houses. The flow rate of fluid in a series pipe
system is limited by the capacity of the smallest link of pipe. There are many other systems too where
constraints must be considered. ’

I 27.4. CONSTRAINTS IN THE FORM OF EQUATIONS : LAGRANGIAN METHOD |

In this section, we shall discuss the Lagrange’s Multipliers Method which provides a necessary condition for
an optimum when constraints are equations. This is a particular case of the more general problem with
inequality constraints which we shall discuss in the next section. The development of this method will made
initially for a function of two variables. Later, we shall generalize the arguments for any number of variables.

Suppose that it is desired to find an optimum of a differentiable function f(x , y) whose variables are
subject to aconstraint g(x , y) = 0 where g is also differentiable. If such an optimum occurs at a point (xo , yo) at
which at least one of the partial derivatives dg/dx or dg/dy does not vanish, then we can proceed as follows :

Near (xo , yo), the equation of the curve g(x , y) = 0 can be written in the form y = h(x).

Since g vanishes along the curve, we have

4 _92_ 9g dh_
7 80, h(x)] = &ty dr =0at (xp , ¥p), .(27.6)
and since (xp , yo) gives the constrained optimum value, we also have

f; [f(x , h(x))] = % +§—; : % =0at (xp , o). (217
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98

3y # 0 at (xg , ¥o), we can define a parameter A by

of ,08_
3 Xay-Oat(xo,yo).

(The utility of taking —ve sign before A will be clear in Chapter 29).
If equation (27.6) is multiplied by A and the result is subtracted from equation (27.7), we obtain

of )
A SE=0at(x. ).

Suppose

: of ,98_ of _,98_
Thus, the equations o A o 0 and 3 A - 0 ..(27.8)
hold at (xg , yo)-
If we set
Lx,y, M) =f(x,y) - Ag(x, y). (27.9)
the equations (27.8) can be written as .
oL :
F 0 -(27.10)
oL .
3y 0 -(27.11)
and the original constraint g(x , y) = 0 is just
oL
=0 ..(27.12)

In other words, necessary conditions for an unconstrained optimum of L (namely, the vanishing of three partial
derivatives of L) are also necessary conditions for a constrained optimum of f(x , y) (under the assumption that by
dg/dx and dg/dy do not vanish at the point in question). The function L defined in (27.9) is called the Lagrangian
function and A is called the Lagrangian multiplier.

We now proceed to generalize these arguments to find an optimum of a differentiable function of » variables

subject to m constraints.
27.4-1. Generalized Lagrangian Method to n-Dimensional Case
The arguments developed in the above section can be readily generalized as follows :
Suppose we wish to find an optimum of a differentiable function
z=f(x),x=(x;,%3,... . X;) € R",
whose variables are subject to the m (< n) constraints
g(x)=0,i=1,2,...,m,andx 20,
where the g;’s are also differentiable. We form the Lagrangian function

L(x,\) =f(x) - igl A (%) (27.13)

involving the Lagrangian multipliers A = (A1 , Az, ..., Ap).

Then the necessary conditions for an unconstrained optimum of L (namely, the vanishing of L’s first partial
derivative) are also necessary conditions for a constrained optimum of f(x), provided that the matrix of partial
derivatives dg;/0x; has rank m at the point in question.

These necessary conditions for a max. (or min.) of f{x) are the system of m + n equations :

aL_of m . 08

=== ~—=0,j=12,...,n
- i . ’ 9 ~y ’
ox 05 i=1 "0 (27.14)
-a—L-—— =0,i=1,2 m
ah,’ - g,‘- 9 8T Ly Ly eney
which we can then solve (at least theoretically) for m + n unknowns x; , X2, ... , Xn, A1, A2, ... , A We are

really interested in obtaining x; , X3, ... , Xp.
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These necessary conditions also become sufficient for a maximum (minimum) of the objective function if
the objective function is concave (convex) and the side constraints are equality ones.

27.4-2. lllustrative Examples

Example 3. Obtain the set of necessary conditions for the non-lienar programming problem :

_ Maximize z = xlz + 3x22 + 5x32 ,

subject to the constraints : x; + x4+ 3x3=2,5x, + 2x, + x3=5, and Xy,Xx2,x320.

Solution. Inthis problem, we are given that

X=(x1,x,x3),f(X) =x12 + 3x22 + 5x32 ,
g1X)=x; +x3+3x3—-2=0, g(X) =5x; +2xp +x3~5=0.
We construct the Lagrangian function for maximizing f(x),
' L(x, 1) =f(x) = A185(x) — A, g5(x).

This gives the following necessary conditions :
L ot~ A =5k =0, 2L =6y =2y =20, =0, O£ = 101, — 3h, — Ay =0
ox; ™ T ox, 2™ - Oxy 3 = ’
daL
oA,
Example 4. Obtain the necessary and sufficient conditions for the optimum solution of the following
non-linear programming problem : :

== (x;+x,+3x3-2)=0, a—}i=—(5x|+2x2+x3—5)=0.

Min. z=f(x; , xp) =3+ 4262
subject to the constraints : x; + x3=7 and x; , x, 2 0.
Solution. Let us have a new differentiable Lagrangian function L(x; , x, , A) defined by
L{x;, x5, M) =f(x; , x2) — A(x, +x-7)= 3¢ ! +26° 5 Ay +x-T)

where A is the Lagrangian multiplier.
Since the objective function z =f{x; , x,) is convex and the side constraint is an equality, the necessary and

sufficient conditions for the minimum of f{x, , x,) are given by

i)—L—=6ez’"+'—k=0 or A=6e*1t1, -@!‘—=2e‘3+5—l=0 or A=2e2%3
Bx, axZ

g—i:—(x,+x2—7)=0 or x;+x,=7

From these, we have
6621 ¥ = 0eM*5 _ 9,7 H+5 ( X =7-x)
or log3+2x;+1=7~-x,+5
or xp=Y3[11-log3], x,=7-15(11-log3).

ExampleS. Findthe dimensions of a rectangular parallelopiped with largest volume whose sides are parallel
to the coordinate planes, to be inscribed in the ellipsoid

gx,y,2)=0%/d) +/bH) + (/D) - 1=0 (27.15)
Solution. Let the dimensions of a rectangular parallelopiped be x , y and z. Its volume is then given by
v(x,y,z)=xyz. ..(27.16)
Forming the Lagrangian function L, we have
Lx,y,z,A)=v(x,y,z)~-Ag(x,y,2) ~(27.17)
Now, differentiating 527. 17) witzl;‘r:spect E;z each varziible and asetting the results equal to zero, we obtain
L
Ea—x=yz—?=0,g=xz—?x=0,3%=xy—zc—lzz=0, (27.18)

Multiplying first three equations of system (27.18) by x, y , z respectively, adding, and then making use of
the last equation, we obtain 3v(x, y , z) —2A =0. Thus , A = 3 v(x,y,2).
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Now, with this value of A substituted in first three equations respectively, we have
x=a/\N3 ,y=b/\3 ,z2=c/\3 ..(27.19)
which is the required answer.
Notes. (i) The results of Example 5 also hold good for the special case of the sphere obtained by puttinga=b=c=1.

(i) As practical applications, such a problem can be formulated for a modern auditoriam with a hemisphere for an outer-
structure :for example, if for ventilation reasons it is desired to have a parallelopiped for the inside.

Example 6. A positive quantity b is to be divided into n parts in such a way that the product of n parts is to
be a maximum. Use Lagrange’s multiplier technique to obtain the optimal sub-division. [ Also see page 5.79]
Solution. Let b be divided into n parts x; , x5 , ... , X, , S0 that we have to maximize the function

YEX| Xy oen Xy ...(27.20)
subject to the constraints
X1+x+ ... +x,=b, x,20,x,20,...,x,20. .(27.21)
Now forming the Lagrangian function L we have
L(x), %3 oo s Xy s M) =X120.0. Xy = A [b— (X + x5 + ... + x,)] ..(27.22)

Now, differentiating (27.22) with respect to each variable and setting the results equal to zero, we get

g—L=x2x3...x,,-7L(O—1) =0, 2 ik x,~A(0=1) =0, ....,

291 aX2

oL 3L ...(27.23)
and aT":xlxz vee Xgo1—A(0-1) =0, §x=0—l(b—x1—x2-...—x,,) =0.

Multiplying first n equations of the system (27.23) by x; , x5 , ... , x, respectively, adding and then making
use of last equation, we obtain
n(xp.x...x)+A (X +x%+...+x)=0

or A=—-n(xx;...x)/b- Cox1+x3+ .. +x,=b)
Now, substituting this value of A in the first n equations respectively, we obtain
X|=xXp=xX3=..=x,=b/n
giving y=(b/n) (b/n) ... ntimes=(b/n)" -
These values of x; , x3, ... , X, satisfy all the constraints and gives a value for y larger than the value when

anyof x; ,x3, ... , X, is zero, so together constitute the optimal subdivision of b.

Remark : In Lagrangian multiplier method, sometimes it becomes difficult to solve the system of n simultaneous equations. This
difficulty can be removed by using dynamic programming approach based on the “Bellman’s principle of optimality”.
Dynamic programming technique converts one problem involving n variables into n sub-problems, each in one variable.
The solution is obtained in an orderly manner by starting from one stage to the next and is completed after the final stage
is reached. The detailed discussion of this technique is given in the last chapter.

27.4-3. Sufficient Conditions for Maximum (Minimum) of Objective Function
(with single equality constraint) .

In case the concavity (convexity) of the objective function is not known, the method of Lagrange multipliers
can be generalized to obtain a set of sufficient conditions for a maximum (minimum) of the objective function
Let us consider the non-linear programming problem involving n variables and single constraint.

Max. (or Min.)z=f(x) ,x € R"
subject to the conditions : g(x)=0, x=20.
Let the Lagrangian function be : L(x, A) =f(x) — Ag(x).
The necessary conditions for a stationary point to be a maximum or minimum are :

-aﬁ—gi-—xggéo(jﬂ,z,... ,n), and “a‘é=“g(x)=0'

ax, - axj axj oA
df/ ox;
The value of A is obtained by k:—f—xj- forj=1,2,...,n
dg/dx;

The sufficient conditions for a maximum or minimum need the computation of (n — 1) principal minors of
the determinant for each stationary point, as given below :



12 / OPERATIONS RESEARCH

0 2 Je x4

Bx 1 axz . . ax"
9 22[ - a_28. _az.L Y Y _az.L -2 _62.3__
ox, Bxlz Bxlz ox;dx, Oxdx, 7 dxqox, = ax ox,|

2 2 2 2 2 2 A
9 _@_L_l__a_g_ _al__kiﬂ _aL_;'_aL =4, (say)
ox, Oxy0x; Oxpdx; g, 22 3 x22 dxy0x,  Oxyox,
% I, % I, % I %
dx,  Ox,dx; = dx,ox ox,0x;  Ox,0x; ax,," ax?
IfA3<0,A4<0,A5>0, ..., the signs are alternately positive and negative, the stationary point is a local

maximum.

IfA;<0,A4<0,A5<0, ..., A, <0, the sign being always negative, the stationary point is a local
minimum.

Example7. Solve the non-linear programming problem :

Min. z=2x] = 24x; + 2x} - 8x, + 2xf — 12x, + 200
subject to the constraints :
Xp+x+x3=11, and x;,x,x,20. [Agra 99, 98]
Solution. The Lagrangian function can be formulated as follows :
L(x;, %3, x3, \) = 20 = 24x; + 2] — 8x, + 2x — 123+ 200 = A (x; + %, + x5 — 11).

The necessary conditions for the stationary point are :

oL oL oL
ax]—4x1—24—l—0, ax2—4x2—8—l—0, ax3—4x3—12-7y—0,

oL
é—i=—(x1 +x2~+x3—- 11) =0.
By solving these simultaneous equations, we get the stationary point
X* = (xl s X2 ,X3)=(6, 2, 3);7\~=0

The sufficient condition for the stationary point to be a minimum is that the minors A; and A, must be both
negative. To verify this, we have

0111

o 11 1 4 00
Ay=|1 4 0}|=-8 and A4=1040 =—48.

Lo 4l 100 4

Thus, x* = (6, 2, 3) is the solution to the given NLPP.

Q. 1. Examine z = 6xyx; for maxima and minima under the requirement 2x; + x, = 10.
2. What happens when the problem becomes that of maximizing z = 6x;x; — 10x; under the constraint equation
3x1 + % + 3x3 = 10.

27.4-4. Sufficient Conditions for Max. (Min.) of Objective Function
(with more than one equality constraints)

Let us now consider the NLPP involving more than one constraint.

The problem is : Optimize z = f{x) , x € R” subject to the constraints :
8x)=0,i=1,2,...,m, and x20.

In order to optimize z = f{x), the Lagrangian function

L H=fn)- £ Ngx) (m<n)
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contains the m Lagrangian multipliers K= (A; , A, , ... , Ay,). It may be verified that the equations :

i-)£=0 forj=1,2,...,n
ox;

oL .

87»,-_0 fori=1,2,....,m

provide the necessary conditions for stationary points of f(x). So the optimization of f(x) subject to g(x) = 0 is
equivalent to the optimization of L(x , A). The Lagrange multiplier method for a stationary point of f(x) to be a
maxima or minima is staed here without proof.
For this, we assume that the function L(x , A) , f(x) and g(x) all possess partial derivatives of first and second
order with respect to the decision variables.
>’ Lx,\)

ax,- axj
nxn
be the matrix of second order partial derivatives of L(x , A) w.r.t. decision variables,

_[ d&ix)
V—[ ax]

Let . M= for all i and j.

. xn
wherei=1,2,...,m;j=1,2,...,n
o Vv

|
4 M (m + n) X (m +n)

where O is an m x m null matrix. The matrix Hp is called the bordered Hessian matrix. Then, the sufficient
conditions for maximum and minimum can be stated as below.

Now define the square matrix Hg= [

Sufficient Conditions for Maximum and Minimum :
Let (x*, A*) be the stationary point for the Lagrangian function L(x, A), and Hg* be the value of
corresponding bordered Hessian matrix computed at this stationary point. Then,
(i) x* is a maximum point, if starting with principal minor of order (m + 1), the last (n — m) principal
minors of Hg* form an alternating sign pattern starting with (- H™*";and
(i) x* is a minimum point, if starting with the principal minor of order (2m + 1); the last (n — m) principal
minors of Hg* have the sign of (- 1)".

Note. !t may be found that the above conditions are only sufficientfor identifying an extreme point, but not necessary. In other
words, a stationary point may be an extreme point without satisfying the above conditions. .

Example 8. Solve the non-linear programming problem :
Optimize z= 4x,2 + 2x22 + x32 —4x1x;
subject to the constraints S X Ax+x3=152x —x+2x3=20, and x;,x,X32 0.
Solution. We are given that f(x) = 4x12 + 2x22 + x32 — 4x,x, subject to the constraints :
, gi(x)=x;+x+x3—15, g2(X) =2x) — x5 + 2x3 — 20.
The Lagrangian function is given by
L(x , M) =f(x) = A g1(x) — A2 82(%)
= (4xf + 20 + xF = dxyxp) — Ay (1 +x3+ X3 — 15) = Rg (22 — xp + 23 — 20).

The stationary point (x* , A*) can be obtained by the following necessary conditions :

dL .. oL .. OL
Fra 8x, —4x; — A — 20, =0, ...(1) F dxy —4x; — Ay + Ay =0 ..(10), ._“ax:; =203 — A — 20, =0, ..(1i1)
oL , oL
~a—>\'—l=-—(x1 +x, +x3—15)=0,..(iv) an —-—a}vz=—(2x1 —x +2x3—-20)=0. (V)

}\.1 +2x
2

Adding (i) and (i), x;= (2A; + A2)/4 . From () x; = 3\,/4.From (iii) x3 =
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Putting the values in (iv) & (v), we get7A; + 5A, =60 and 5A, + 107, =80
Solving these eqns, A, = 40/9, A, = 52/9.
33 10

X1 =?, XZ=?, X3=8.

x* = (X] s X2 X3) = (33/9 N 104 N 8), and A*= (Iq , AQ) = (4% s 5%)
For this stationary point (x* , A*), the bordered Hessian matrix is given by
[0 0 : 1 1 1
0 0 : 2 -1 2
o=y ' 0% 4 %
I -1 :-4 4 0
1 2: 0 0 2]
Since m=2andn=3 here, so n—m= 1,2m+ 1 =5. This means that we only need to check the
determinant of Hg* and it must have the positive sign (i.e., the sign of (- 1)2) ’

Now, since | Hg* | = 72 which is positive, x* is a minimum point.

Q. 1. Minimizez = x12 + x22 + x32 » subject to the constraints : 4x; + x:f +2x3=14, and X, X%, x320.
[Ans. x; = 0.81, xp = 0.35, x3 = 0.28 ; min z=0.857]

2, Minimizez = 2)('12 + xz'" + :3)(32 + 10X + 8x + 63 — 100, subject to the constraints : X1+X+x3=20, and xy, x3, X3 2 0.

[Agra 99])
[Ans. x; =5, =11, x3 = 4; min. z= 281]

27.5. CONSTRAINTS IN THE FORM OF INEQUALITIES
' (Kuhn-Tucker Necessary and Sufficient Conditions)

This section is concerned with developing the necessary and sufficient conditions for identifying the
stationary points of the general inequality constrained optimization problems. These conditions are called the
Kuhn-Tucker Conditions, after the men who developed them. The development is mainly based on
Lagrangian method. These conditions are sufficient under certain limitations which will be stated in the
following section. :
Theorem 27.4. (Kuhn-Tucker Necessary Conditions). Given the problem to maximize

f(x),x=(x1 s X2y o0 ’xn)
subject to m number of inequality constraints

g(X)<b;,i=1,2,....,m (27.24)
including the non-negativity constraints x 20 which are written as — x <0, the necessary conditions fora
local maxima (or stationary point(s)) atX are

(i)%@:&j:l,z,... on (i) N [g:®) - b1 =0 (iii) g®) <b, () 20, i=1,2,....m.

Proof. In the given problem, each of the inequality constraints can be converted into equations by adding
the appropriate non-negative slack variables. Thus, to satisfy the non-negativity condition, if we add a

non-negative slack variable siz to the ith constraint g, (x) < b; , we obtain*
g,(x)+s,»2=b,-,i= 1,L2,...,m
subtracting b; gives
Gi(x,s)=gi(x)+s7—b;=0,i=1,2,....m ..(27.25)

Now, our problem becomes in the following form for application of Lagrangian method given in the
preceding section :
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Max. f(x)
subject to equality constraint
Gi(x,5)=0,i=1,2,....m ..(27.26)
In order to obtain all stationary points, we first form the Lagrangian function given by
m m )
L(x,A,s)=f(x)— iEI A Gi(x, s)=f(x)— ‘21 A [gi(x) +s7 - b). -.(27.27)
= I=
Ve dg; | 9g1/0x; 9gy/dx, gy /0x;
B a.Xj mxn B agz/axl agz/aXZ 3g2/3x3

Then the stationary points are obtained by solving the equations (obtained by equating to zero the partial
derivatives of (27.27) w.r.t. x;, A;, s;,respectively, j=1,2,...,n5i=1,2,...,m).

L()__ofx) m , & .
o, =0= ax,. ,E] l,-—-———axj ,J=12,....n .(27.28)
oL (-
—a,f,) =0=G;(x,5)=gX) +s7—b;,i=1,2,...,m .(27.29)
a%fl =0=-2As;, i=1,2,...,m ...(27.30)
1
Multiplying the last equation (27.30) by 12 s; , we get
Ais? =0 ..(27.31)
We now solve G;(x, s;) =0 for
si = b; - gi(x) .(2732)
Substituting the value of s,-2 from (27.32) in (27.31), we get
Ailbi- g1 =0,i=1,2,...,m ~(21.33)

Thus, the equations (27.28), (27.33) and constraint (27.24) satisfied by the stationary pointXo= (X , A, )
proves the necessary conditions (i), (ii) and (iii) respectively.

We now proceed to prove the final (i.e. fourth) requirement 2,20,i=1,2,...,m.

-Since A; measures the rate of variation of fwith respect to b; , we have

Qaﬁb&: + X,- . (see its proof in the Appendix on page 1115)
i

From equation (27.30), we know that either 5:,- =0, or 5;=0, or both vanish at the optimal condition. Let
us investigate the case when s; # 0. This implies that the constraint is satisfied as strict inequality at X and,
consequently, if we relaxed the constraint (make b; larger) the extreme point will not be affected. Therefore,
the change in the optimal value of the objective function with changes in b; will be zero, i.e.

Of®) _ Ly -
B b, - +A;=0.
Now, suppose that A; # 0. This means that the slack variable 5; vanishes. Thus gi(x)=b;.
If possible, let us suppose A; < 0. Then, df (x)/db; < 0. .

This implies that as b; is increased, the objective function decreases. However, as b; increases, more space
become feasible and the optimal value of the objective function f(x) clearly cannot decrease. This contradicts
our assumption. Hence, at an optimal solution X,» 20. _

Similarly, for the case of minimization, as b; increases, f (X) cannot increase which implies A; <0. It must
be noted that if the constraints are equations, that is, g, (X) = b; , then A; becomes unrestricted in sign.

Theorem 27.5. (Kuhn-Tucker Sufficient Conditions). The Kuhn-Tucker conditions which are necessary
by preceding Theorem 27.4 are also sufficient if f{X) is concave and the feasible space is convex, i.e. iff(x)is
strictly concave and gi(x), i =1, 2, ... mare convex.

Proof. Let us suppose that f{x) and g;(x) satisfy the condition given in the statement of the theorem. Then,
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L, %, 9) =00 = £ hilgx) +5 - b,

IfA; 2 0, then ~ A; g{x) is concave if g,(x) is convex.

Hence, fx) - _g | Aigi(x)

is strictly concave. Since A; s,2 =0and A,;b;is constant, if

fx) - i'=£l xi & (x)

is concave, L (x, A, s) is concave. We have shown that a necessary condition for f(x) to be maximum at X is
that L (x,A,5) has a stationary point at X. However, if L (X, A, 5) is strictly concave, its derivative must
vanish at one point only, Consequently, this point must be the local maximum. Hence, the Kuhn-Tucker
conditions (i), (ii), (iii) and (iv) are also sufficient for an absolute ( global) maximum of f(x) at X.

By a similar argument, it can be proved that for the minimization problem, the Kuhn-Tucker conditions are
sufficient provided f(x) and g, (x) for all { are convex.

Important Remarks :

(1

(2)
3

Frogn a(b_ovg,; tvg;) theorems, we conclude that Kuhn-Tucker conditions :
G OL(X,A,8) o . _

(i) ox, =0,j=1,2,...,n

(i) Ailgi(®)-b]=0

(iii) §,»(§)Sb,~ i=1,2,...,m

() A;20

are necessary as well as sufficient for an absolute (or global) maximum of f(x) at X.

It can be easily verified that these conditions are applicable to minimization case with the exception
that A must be < 0.

It must be noted in both the maximization and the minimization cases, that the Lagrange multipliers
corresponding to equality constraints must be unrestricted in sign.

Q. 1.

2,

Discuss the economic interpretation of Lagrangian Muitipliers, the duality theory, and derive 1 - Kuhn-Tuckerconditions

for the non-linear programming problem :
Max. z = f(x), subject to the constraints : g(x) < b;,i=1,2, ..., m.

State and prove Kuhn-Tuckernecesary and sufficient conditions in non-linear programming.  {I.A.S. (Maths) 88, 86]

27.5-1.

llilustrative Example

Example9. Write the Kuhn-Tucker conditions for the following minimization problem : [I.A.S. (Main) 93]

Minimize. f(x) = x,z + x22 + x32 , subject to
81(X) =2x; + x; 5,
&X)= x
83(x) =—x
gx)= —x;
8gs5(x) = - X3

+
bd
[

-

AN IN IN A

2,
-1
-2,

0

Solution. Since this is a minimization problem, then A; < 0. The Kuhn-Tucker conditions are thus given by

(i)

2 1 0

(231262, 2%) + My ha s Aas Aau As) | =1 0
0 -1
0 0

“Here s;is squared to ensure that it is non-negative. Had we not squared it we would require s;> 0 as side constraint also.
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(”) (A'l > A/2 » A'3 1’A'4 s z'5) 20.

(it) M(g1=5)=2(82-2)=A3(g3+ 1) =N4(ga+2) =Asgs=0.
(iv) g(x)<0,where g(x)=g{x)-b;,i=1,2,...,5.

These conditions can be simplified to the following form :

l,,kz,l3,l4.7»5 <0 KI(ZX|+X2—5)=0 A.ng =0
‘2x|+27»1+7v2—-l3=0 M(XI+X3—2) =0 2x; + x4 <S5
2Jz+7\q—>w4 =0 M(l—xl) =0 X + X3 <2
2X3+M—l5 =0 14(2—.!2) =0 x121,x222, x320

Solving above equations, we getx; = 1, x, =2, x3 =0, A = A, = A3 =2, A4 =4, As = 0.

Since the function f{x) is convex and the solution space g(x) < 0 s also convex, then L(x , A , s) must be convex
and the resulting stationary point will give the (global) constrained minimum. The given example shows, however,
that it is difficult in general to solve the resulting conditions explicitly. That is why this procedure is not suitable for
numerical computations. However, the importance of the Kuhn-Tucker conditions will come in quadratic and
geometric programming algorithms tobe discussed in the following chapters.

Example 10. Determine x; , x; , x3 50 as to maximize

z=—x,2—x22—x32+4x1 +6X2 ,
subject to the constraints : x; +x, < 2, 2x;+3x, <12, and x; ,x, 20. - [ILA.S. (Main) 92}
Solution. Here fix) = - xZ —x —x# +4x,+6x, ,x€ R"
gl(X) =X +x2 -2 ’ gz(X) = le + 3x2— 12.
First we decide about the concavity-convexity of f{x). For this we compute the bordered Hessian matrix

-2 0 0 n=3
H,,:[ 0 -2 o], m=2 - |Hpl=-8<0.
0 0 -2 n-m=1

The objective function f(x) is concave if the principal minors of matrix Hp alternate in sign, starting with
the negative sign. If the principal minors are positive, the objective function is convex. So in this case fAx) is
concave. '

Clearly, g,(x) and g, (x) are convex in x. Thus the Kuhn-Tucker conditions will be the necessary and
sufficient conditions for a maximum. These conditions are obtained by partial derivatives of Lagrangian
function : »
L(x , X, 5) =A%) = My [g1(%) + 571 = Xz [g2(x) + 5]
wheres = (s, 5,) , A=(A, , Ap) , and sy, 5, being slack variables, and A , A, are Lagrangian multipliers.

The Kuhn-Tucker conditions are given by

(@) () —2x,+4=L;+2)), (i) —2x, + 6 =7y + 3N, ({ii)—2x;=0.

(b) () A (x)+x3—-2)=0, (ii) Ay (2x; +3x,-12)=0.

(c) (i) x;+x,—-2%50, (i) 2x; + 3x, - 12<0.

(d) A, 20,1, 20.

Now, four different cases may arise :

Case 1. (A, =0, and A, = 0). In this case, the system (a) of equations give : x; =2, x, =3, x3 =0. However,
this solution violates both the inequalities of (c) given above.

Case 2. (A =0,2,#0). In this case, (b) give 2x; + 3x, =12 and (a) (i) and (ii) give ~2x; +4=2A,,
—2x,+6=3A,. The solution of these simultaneous equations gives x;=2#3,x,=3%3, A, =243> 0; also
equation (a) (iii) gives x3 = 0. However, this solution violates (c) (). So this solution is discarded.

Case 3. (\; %0, A, # 0). In this case, (b) (i) and (ii) give x; + x, = 2 and 2x, + 3x, = 12. These equations give
x; =~ 6 and x; = 8. Thus, () (i), (i) and (iii) yield x3 = 0, A, = 68, A, = — 26. Since A, = — 26 violates the condition
(d), so this solution is also discarded. .

Case 4. (A 20, A, = 0). In this case, (b) (i) gives x; +x; = 2. This together with (a) (i) and (#) give
x = V2, x, =%, A =3 > 0. Further from (a) (iii) x; = 0. This solution does not violate any of the Kuhn-Tucker
conditions. -
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- Hence the optimum (maximum) solution to the given problem is
n= %,X2=%,X3=0Withll=3,k2=0,
the maximum value of the objective function is z* = 174.

EXAMINATION PROBLEMS

1. Verify that the function f(x; , X2 , X3) = 2X1XoX3 — 4X1X3 + x12 + ng + )(-,2 ~ 2x3 — 4x2 + 4x3, has the stationary points (0, 3,
1),(2,1,1),(2,3,-1),(0,1,-1),and (1, 2, 0). Use the sufficiency condition to check for the extreme points.
2. Write the Kuhn-Tuckernecessary conditions for the following problems :

() Max. I(x) x13 - x22 + x,x;;" , subject to (i) Min. Kx) = xf + x22 + 5x1x2X3 , subjectto

Xy +x2 +X3=5, 5x1 xf-xszz,x, X2, X320, xf—xzz—xgs10,x13+xa2+4x';"220, X1, X2, X3 2 0.
3. Solve the following non-linear programming problems, using the method of Lagrangian multipliers :

(i) Max.z=6x; +8x; -x,z--)q2 -—xzz , (ii) Min.z=x,2+ x22+x§
subject to the constraints : subject to the constraints :
4x,+3x;=16, 3xy+5x=15,and x; , %2 20 X1+ X +3x3=2,5%1+2x+Xx3=5,Xx1, X, 32 0.
[Ans. x; =3%1, X = 1241, 2* = 16.5] [Ans. x; =0.81, xo = 0.35, x3 = 0.28, z* = 0.86]

4. Use the Kuhn-Tuckerconditions to solve the following non-linear programming problems :

® Maxz=2x2+12xyx0 — 722 (i Max. z = 8x; + 10% — X2 - xZ
subject to the constraints : subject to the constraints :
2x1 + 5x €98, and xq , xz 2 0. 3x1+2x,<6, and x; 20, x20. [1A.S. (Main) 91]
[Ans. x; = 44, x; = 2, 2* = 4900} [Ans. x; =443, o =313, 2* = 21.3]

(iii) Max.z=2x - x,z + X, (iv) Max.z= 7x12 +6x1 + 5xz,
subject to the constraints : subject to the constraints :
2% +3x256,2X1 + X254, %, %20 Xy +2% <10, % -3x%<9, %, % 20.
[Delhi (Stat.) 96] [Ans. x; =486 , x; = V5, 2* = 703.5]
[Ans. x; =24, x; = 1%, 2* = 224)

(v) Max.z= 7x‘2 ~6x;+ 5x2"’ (vi) Max.z= 6x12 + 5x§,
subject to the constraints : subject to the constraints :
X1+2X510, X -3%<9,x,x20 Xy +5x23,x ,%20.
[Ans. x; =484 , x; = 1) [Ans. x; =31, xp = 185, 2* = 54/434]

(vil) Max.z= 2)(12 +12x1% - 7)(22 , subjectto the constraints : 2x; + 5x, <98, x; , X2 2 0.
[Ans.x; =0, 2 =0, max. 2= 0)
5. Define convex programming problem. What is the Lagrangian function associated with it ? Solve the non-linear
programming problem ?
Min. z = - log x; - log xz , subejct to the constraints : x; + 2 $ 2, X3, X2 20.
[Ans.x; =1, X =1, minz=0]

6. Solve the following NLPP : Max z = Bx12 + 2xz2 subejct to the constraints 'x{" + xzz <9,x<2,and x; , x2 20.

7. A manufacturing concern produces two products, say Aand B. The costs of production for these two products are
displayed in following table :

Number of units p@gced Cost of production in Rupees o
Product A x| 60 + 1.2x; + 0.001x]
Product B x 40 + 2x, + 0.001x}

Because of the limited available resources the concem has to bear within the resrictions 2x; + 3x; <2500 and
Xy + 2x < 1500. Using Kuhn-Tucker conditions method, determine the optimal level of production of Aand B by the
concern.

I 27.6. SADDLE POINT PROBLEMS

In Garmes Theory, the saddle point of a payoff matrix was defined. Let { v;; } be the payoff matrix for a
two-person zero-sum game. If v,.; denote the payoff maxima at i* over the rows and v;; denote the payoff
minima at j* over the columns, then
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isj 2 Qjsjs 2 ajje (by Theorem 19.1 on page 623)

Let fbe a real valued function of several variables. Alsolet x = (x; , x5, .., x,)anduw=(uy , 4, ..., Uy),
then for these variables the function fis denoted by fix ,u) ,x € R" ,u e R".

Now the saddle point of functions can be defined as follows :

Definition 1 (Saddle Point) : Let f{x , u) be a function of x € R” and u € R™. The function f{x , u) is said
to have a saddle point at (x* , u*), if and only if, -

ﬂX* »u) 2 fix*, u*) 2 fix, u*).

Definition 2 (Saddle Value Problem) : Let x € R", u € R™. The problem of determining the saddle
point value ix* , u*) under the constraints x 2 0 and u 2 0, is called a Saddle Value Problem.

For simplicity, we introduce the notation f * = f (x* , u*).

Assuming that f(x , u) is differentiable partially w.r.t. x and u, we define the following partial derivatives
of fix , u) as the column vectors,

PO TN it NP LR
*“[ax,""’ax,,]’ ““[au.""’au,,,]
where the superscripts (*) indicate the partial derivatives obtained at (x* , u*).

Theorem 27.6. (Necessary Conditions for Non-negative Saddle Point). Letx € R" ,u e R" andfbe a
function of x and u. For a point (x* , u*) to be a non-negative saddle point of f(x , ) it is necessary that
(i) fr €0, £ x* =0, (ii) fux 2 0, £ u* = 0, for x* 20, u* 2 0.

Proof. Let (x* , u*) be a saddle point of {x , u) with x* 20, u* 2 0.

Now this theorem can be proved in two parts.

Part 1. We may recall that fix , u*) is maximized by x* at the saddle point. This means that

%ﬁ < 0 (at the saddle point for each x;* € x*)
j .
For, if 9f */0x; > 0, we may increase the value of that x; and hence that of £ Further, we may observe that,

if 9f */0x; < 0, we would prefer a lower value of x; in order to increase f. Obviously, we would stop decreasing
x;only when the lower limit, say zero, were reached. Thus
*
(i)if§ﬁ<0,thcnx-*=0, (ii)if—aL-=0,thcnxj*20
ox; J ox;
Since x;* was selected arbitrarily, we have

i.i'ﬁSOforj= L,2,...,nm,
an
and -aﬁ<0==x-*=0,-aﬁ=0=>xj*20.
ox; I ox;
foe <0 and f5 x* =0.

Part 2. Now we recall that f(x*,u) is minimized by u* at the saddle point, i.e. for each
u* € u*, 9fx/du; 2 0 at the saddle point. For, if df*/du; < 0, we may decrease the value of that u; and hence
that of £, which is not possible. When df*/du; > 0, we may prefer even a lower value of 4; in order to lower f.
Obviously, we would stop decreasing u; only if the lower limit, say zero, were reached. Thus, df*/dy; 2 0, and

(i) Of/0u;>0=> u* =0, (ii)of*/ou;=0=>u;*>0.

Since u; was arbitrary, this holds foralli=1, 2, ..., m.

Hence, f,+ 2 0 and fru*=0.

Thus the theorem is completely proved.
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Theorem 27.7. (Sufficient Condition for Non-negative Saddle Points). Let x € R',ue R” and f be
function of x and u. Then, for a point (x* , u*) to be a non-negative saddle point of f (x , u) it is sufficient that :
(a) frs SO, fh x* =0 forx* 20 (b) fas 20, fih u* =0 foru* >0
(©)f X, u*) SFE* ,u¥) +f (x— %) (d)f (x*,u) 2f (&, u¥) + £ (u = u¥).
Proof. Let us suppose that the given conditions (a) to (d) are satisfied for a point (x* ,u*) to be a
non-negative saddle point.
From conditions (¢) and (a), we have
fx, u*) SAX*, u*)+fh x*, forx* 20 ..(27.34)
Further, since f,‘c x*=0,/xs$0=> fxT. x*<0forx=0.
Thus (27.34) reduces to
fx,u*)<f(x*,u*)forx*20,x20 ..(27.35)
Similarly, (b) and (d) give v
fx*,u)2f(x*,u*)foru*>20,u20 ...(27.36)
Now combining (27.35) and (27.36), we get
fx,u*)<f(x*,u*) Sf(x*, )
for x*,u*,x,u20,
This proves that (x* , u*) is a non-negative saddle point of fix , u).
Thus, the theorem is completely proved.

I 27.7. NON-LINEAR PROGRAMMING PROBLEM AND SADDLE POINTS l
Let the standard NLPP be :

Max.x=f{x),x€ R" ..(27.37)
subject to the constraints :
g(x)=0@G=12,...,m),x20.
We can formulate the associated Lagrangian function

L, w=f®- 2 ugx) (2138)

where u € R™ are the Lagrange multipliers.

Thus the problem of maximizing f{x) is equivalent to that of maximum L(x , u).

Now we shall be able to establish the relationship between the maximization of L(x, u) and the saddle
function of x and u. For this, we shall assume that f{x) and all constraint functions g;(x) possess the partial
derivatives.

Theorem 27.8. (Necessary Conditions for Saddle Point Correspondence). For x* € R" to be a solution
to NLPP (27.37), it is necesary that x* and some w* satisfy the conditions of Theorem 27.6 for
fix, u) = L(x, u), where u* € R™ are the Lagrange multipliers as given in (27.38).

Proof. Let x* be a solution to NLPP (27.37). Then, this solution must satisfy the Kuhn-Tucker conditions :

3§_ ' u:ag‘—(,)(j=1,2,...,n) (b) u; g(x)=0(i=1,2,...,m)
J i=1 axj
(c) g(x)S0(i=1,2,...,m) (d) u*20(=1,2,...,m)

Now from (a), we may write

F@) g o8 gy

an* s u; ij ...,nand
m dg; (x
%{g‘—}- 2w g;f*) xF=0,forj=1,2,...,n3i=1,2, ..., m.
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. Qﬁg)_ m .ag,-(x) .
or - X uy—/—,j=1..,n|<
l ax; .z u ax; j n|<0 (27.39)
T
and Qﬂg}— g u;ag;(:‘)-,j=1,...,n x*=0.
axj i=1 axj

Obviously, x* 2 0 is a solution to (27.37)
From above condition (¢) we have.
(i) —gi(x)20fori=1,2,...,m,and from (b) we have
(ii) gix)u; =0 fori=1,2, ..., m.
Also, (d) above permits us to write
(fii)u* 20.
Combining (i), (ii) and (iii), we may write
[-g(x),i=1,2,...,m]20and [-g(x),i=1, ..., mu =0 ...(27.40)
Now, if {ix" ,u") = L(u® , x°), then from (27.38) we have

m dgi(x
j.L‘:Q&(‘)_ z u,-*—@forj=l,2,...,n and —aé=—g;(x).
] axj axj i=1 axj au,-

Thus, (27.39) and (27.40) may be written in the modified form as
fT<0andfLx"=0forx"20; fL20andf}u"=0foru’20.
These are essentially the conditions of Theorem 27.6.

Thus the theorem is completely proved.
Theorem 27.9. (Sufficient Conditions for Saddle Point Correspondence). Given the NLPP of maximizing

z=fx), x € R", subject to the constraints g{x) = 0 andx 2 0. For x" to be a solution to this NLPP, it is sufficient

thatx" and u’ satisfy the conditions of Theorem 27.7 when fx , u) = L(x , u), whereu € R™.
Proof. The Lagrangian function can be constructed as

L(x ,u) =flx) - igl u; g{(x),ue R".

Let L(x,u)=fix,u)forxe R" ;u e R™ Thatis, fix ,u) =fix) - 'gl u; g{x).
i=

We assume that the following conditions of Theorem 27.7 are satisfied :
(@)fes S0, £ x" =0 for x* 20, (b) fus 20, fuo u’ =0 foru’ >0
(C)fix,u") SAX' ,u") +£E(x — x7), and () fix" , w) 2 Ax", u") +f(u —w).
If we are able to show that x* maximizes f{x , u") for x* 20, then our theorem will be proved.
It follows from the conditions (a) to (d) above that
fix,u”) SAx",u) SAx",u) forx"20,u’ 20.
This shows that x” maximizes f{x , u’) for x* 2 0 and hence maximizes L(x , u”) for x" 0. Consequently,
x" is the optimum solution to the given NLPP.
Thus the theorem is completely proved.
EXAMINATION PROBLEMS
1. If F(x,y) has a non-negative saddle point (Xo , Yo), prove that x is a solution of the following convex programming

problem : Min. f(x) , x € R" subject to the constraints : g; (x) S0 (1< i<m), x20
where f(x), g(x) are convex functions.

2. Letx’ be alocal minimum to the NLPP :
Min. x), subject to the constraints : g;(x) 2 0, i=1,2,...,mhx20,j=1,2,..,mx2 0.
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Show that a necessary condition for a differentiable function fto have an unconstrained local minima or maxima at x* is
V £x") =0.
3. Show that the optimum value of the objective function of the NLPP ;

n
Minz = i£1 (c,-/x,),subjecttotheconstraints:i51 ajx=b,x20(j=1,2,..,n)

« [ m : " .
is given by x ==| Za;c|,wherea;, cjand bare positive constraints.
b| =15 '+ G

4. Formulate the Kuhn-Tuckernecessary conditins for the NLPP : Max. z = f(x), subject to the constraints :
gi(x)20,9/(x)20, ge(x)20 i=1,2,...,m,j=m+1,...,m, k=1,2, ... ,m, and x20.
§. Wirite the Kuhn-Tuckerconditions for the following problem :
Minimize f(7;=x1"’+x§+x:f, subjectto2x; + o~ x350,1-x;50,2-x<0,~- 3 S 0.
Also solve the problem. [LA.S. (Maths.) 82]
6. Explain what is meant by Tucker-Kuhn conditions. : [LLA.S. (Maths.) 88]

el




NoN-LINEAR PROGRAMMING PROBLEM
(Formulation and Graphical Method)

[ 28.1. INTRODUCTION H

In chapter 1 of ‘Linear Programming and The Theory of Games’, we have introduced the linear
programming problem which can be reviewed as

n
Maximizez = j;‘;lcj X ..(28.1)
n
subject to _Zla,-j x<b; fori=1,2,...,m ..(28.2)
J =
and x20 forj=1, 2,...,n ‘ ..(28.3)

The term ‘non-linear programming’ usually refers to the problem in which the objective function (28.1)
becomes non-linear, or one or more of the constraint inequalities (28.2) have non-linear relationship or both.
In actual practice, such situation occurs if a purely linear relationship may not exist in the profit or cost
function when the production levels vary. For example, production costs and revenues vary non-linearly with
the scale of operations. :

[ 28.2. PRACTICAL SITUATIONS OF NON-LINEARITIES 1

The situations in which non-linearities are built into the programming models are :

(1) Gasoline blending. In the model of blending gasoline from so-called refinary raw stocks usually
contains non-linear constraints relating to each blend, octane relating, since this quality characteristic varies
non-linearly with the amount of tetraethyllead added to the mix. ‘

(2) Sales revenue. In marketing, we usually observe that—the lower a product’s price, the greater the
sales quantity. Therefore, sales revenue does not vary proportionately with price. Consequently, this
phenomenon reflects the objective function to be non-linear. For example, let S (p) represent the sales quantity
as a function of price p, then p S(p) is the associated sales revenue. If the sales quantity function is linear, say
S(p) = ap + b, over the range of interest for p, then the sales revenue component in the objective function is
quadratic (ap2 + bp), where p is the decision variable.

(3) Portfolio selection problem. Let x; represent the proportion of available funds to be allocated to
security j. Assume that g; is the actual (random) gain per unit invested in security j, and oy is the associated
expected gain. Further suppose that we stipulate b to be the lowest acceptable expected gain per unit invested
in the entire portfolio.

The consideration of risk is introduced by means of the objective function involving a quadratic form :

n n
Minz= X X O©;xx, ..(28.4)
i=1 j=1
where oj=Ela;- 0] - [a;— oyl ..(28.5)
represents the covariance of gain between securities i and j, subject to the constraints :
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n
j=21 xi=1 and xi20forj=1,2,...,n ...(28.6)

,é; %2 b, (28.7)

where the left-hand side of (28.7) represents the expected gain per unit invested, because the expected value of
a sura equals the sum of expected values. 4

There may be additional constraints on the composition of the portfolio, several time periods, and other
measures of risk.

(4) Safety-Stock Inventory Levels. Safety-stocks are usually maintained to accomodate weekly
fluctuations in sales. One approach used to solve such a multiperiod model is to let the safety stock level for an
item be a function of both, its forecasted sales quantity and the fraction of capacity utilization implied by this
forecast. For example, let ¢ be the weekly capacity available to produce an item, s the item’s forecasted
average weekly sales, and ns the item’s safety stock level, where n denotes the number. of week’s sales
depending on the capacity utilization factor s/c. To explain this, suppose management has established the
formula for n to be n = m + f(s/¢); then the resultant safety-stock level is a quadratic function [ms + (¢ sz]
of the items forecasted average weekly sales. Such level may appear in many of the planning model’s
constraints as well as in the objective function.

| 28.3. FORMULATION OF NON-LINEAR PROGRAMMING PROBLEMS |

To explain the method of formulation of non-linear programming problems, we consider the following
example. : '

Example 1. (Production Allocation Problem). A manufacturing company produces two products :
Radios and TV sets. The sales-price relationship for these two products are given below :

Products Quantity Demanded Unit Price
Radios 1500—Sp p
TV Sets 3800—10g g

The total cost functions for these two products are given by 200x + 0.1x* and 300y + 0.1y* respectively.
The production takes place on two assembly lines. Radio sets are assembled on Assembly line I and TV sets are
assembled on Assembly line I1. Because of the limitations of the assembly line capacities, the daily production
is limited to no more than 80 radio sets and 60 TV sets. The production of both types of products requires
electronic components. The production of each of these sets require five units and six units of electronic
equipment respectively. The electronic components are supplied by another manufacturer, and the supply is
limited to 600 units per day. The company has 160 émployees, i.e. the labour supply amounts to 460 man-days.
The production of one unit of radio set requires 1 man-day of labour, whereas 2 man-days of labour are
required for a TV set. How many units of radio and TV sets should the company produce in order to maximize
the total profit ? Formulate the problem as non-linear programming problem.
Formulation. Let x and y quantities of radio sets and TV sets be manufactured by the firm, respectively.
As given in the problem,
x=1500-5porp=300-0.2x ...(28.8)
y = 3800 - 10gor g=380-0.1y .(28.9)
If the total production cost of amounts x and y is denoted by ¢; and c;, respectively; then it is also given
that

¢ =200x +0.1x* ..(28.10)
o= 300y + 0.1y? .(28.11)

Thus, the revenue on radio sets becomes px and on TV sets qy. Therefore, the total revenue R is given by
R=px+qy. ..(28.12)

Substituting the values of p and g from equations (28.8) and (28.9) in (28.12), we get
R=(300~0.2x) x+ (380~ 0.1y) y or R=300x - 0.2¢* + 380y — 0.1y?
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Now the total profit P is obtained by subtracting the total cost (¢; + ¢,) from the total revenue R.
Therefore,
P=R—(c;+¢cy) or P=(300x~-0.2x* + 380y — 0.1y%) — (200x + 0.1x% + 300y + 0.1y%)

or P =100x — 0.3x> + 80y — 0.2y". ..(28.13)

Thus, we observe that the objective function obtained above is non-linear.

In this problem, the available resources affect the production. Since more than 80 radio sets cannot be
assembled on assembly line I and 60 TV sets on assembly line II per day, we have the constraints :

x<80and y<60

Another constraint of daily requirement of the electronic components is 5x + 6y < 600.

Also, the number of available employees is restricted to 160 man-days. Therefore, we have one more constraint
1x+ 2y <160,

Since the production of negative quantities has no meaning, we must have the non-negativity restrictions :
x20,y20.

Thus, finally, the complete formulation of the problem becomes :

Max. P = 100x + 80y — 0.3x” — 0.2y?, subject to the restrictions :
Sx+6y<600, x+2y<160, x<80,y<60,andx,y=20.

Because of the non-linearity of the objective function, the problem is of non-linear programming category.

EXAMINATION PROBLEMS

1. A company manufactures two products A and B. it takes 30 minutes to process one unit of product A and 15 minutes for
each unit of Band the maximum machine time available is 35 hours per week. Products A and Brequie 2 kgs and 3 kgs
of raw material per unit respectively. The available quantity of raw material is envisaged (considered) to be 180 kgs per
week.

The products A and B which have unlimited marked potential sell for Rs. 200 and Rs. 500 per unit respectively. If the
manufacturing costs for products A and B are 2» and 3}/2 respectively, find how much of each product should be
produced per week, where

X = quantity of product A to be produced, y = quantity of product Bto be produced.
{Ans. Max. z = (200 - 2,%) + (500 - 2}’2) ; subjectto 0.5x+ 0.25y < 35, 2x+ 3y < 180;and x> 0, y2 0]

2. The total profit of a restaurant was found to depend mostly on the amount of money spent on advertising and the quality
of the preparation of the food (measured in terms of the salaries paid to the chefs). In fact the manager of the restaurant
found that if he pays his chefs x Rs. per hour and spends y Rs. a week on advertising, the restaurant’s weekly profit (in
Rupees) will be

z=412x+806y-x2-—f—xy.
What hourly wages should the manager pay his chefs and how much should he spend on advertising so as to maximize
the restaurant’s profit ? :

[ 28.4. GENERAL NON-LINEAR PROGRAMMING PROBLEM

The mathematical formulation of general non-linear programming problem may be expressed as follows :
Max. (or Min)z=C (x;,x,, ... , X,), subject to the constraints :
ai(x;,x3,....x){<,=or 2} b

az(xl,xz,... ,x,,){S,= or Z}bz

a,,,(x, 3y X2y ene ,x,,) { S,= or 2 }bm,
and x20,j=12,...,n,
where either C(x, , x3 , ... , X,) or some a;(x; , X2 , ... , Xp) , i = 1, .. , m; or both are non-linear.
In matrix notation, the general non-linear programming problem may be written as follows :
Max. (or Min.) z = C(x), subject to the constraints :
a(x){<,= or 2}b;,i=1,2,...,m
and x20,
where either C(x) or some a;(x) or both are non-linear in x.
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28.5. CANONICAL FORM OF NON-LINEAR PROGRAMMING PROBLEM ]

The canonical form of non-linear programming problem can be viewed as follows :
Max. z2=C(x; ,x;, ... , X,), subject to

a,-(xl 3 X2 5 eee ,x,,)SO,i= 1,2, R (3

x20,j=12,...,n,
where at least one of the functions C(x, , x5, ..., x,) anda; (x;,x3,...,X,),i=1,2, ..., m,is non-linear.

In matrix form, it may be defined as : Max. z = C(x), subject to a(x) < 0.

The non-negativity conditions x 2 0 are summed to be the part of the given set of constraints. It is further
assumed that at least one of the functions C(x) and a(x) is non-linear. Furthermore, for the purpose of
presentation, these functions are assumed to be continuously differentiable.

Unlike linear programming, no general algorithms are available for dealing with non-linear models. The
reason for this is mainly the irregular behaviour of the non-linear functions. Although, a large number of
algorithms have been developed for the solution of non-linear programming problem, even then there is a need
of developing a more efficient solution procedure.

In the present and subsequent chapters we shall discuss some of the elementary type of solution
techniques.

Q. 1. Give a formulation of the general Mathematical Programming Problem and obtain the linear programming as a special
case of the same.

2. Whatis a non-linear programming problem ?

28.6. GRAPHICAL SOLUTION I

In a linear programming problem, the optimal solution was usually obtained at one of the corner (extreme)
points of the convex region generated by the constraints and the objective function of the problem. But, it is not
necessary to find the solution at a corner or edge of the feasible region of non-linear programming problem.
The following numerical examples will make the method clear.

Example 2. (Linear objective function, Non-linear constraints) Solve graphically the following problem :

Max. z = 2x; + 3x; , subject to x,z +,\c22 <20, x1x;<8,and x; , x, 2 0.
Verify the Kuhn-Tucker conditions hold for the maxima you obtain. [Banasthali (M.Sc.) 93]
Solution. Let Ox; and Ox; be the set of rectangular cartesian coordinate axes in the plane of the paper.
Obviously, the feasible region will lie in the first quadrant only, because x; 20, x, 2 0.
Now we plot the curves x,z + x;,z =20 and x)x, =8.

We observe that x,z + x22 =20

= %4
represents a circle of radius V(20) with its ,126= ;’:f;:’: ~e Rectangular hyperbola
centre at the origin; and x,x, = 8 represents RGN X% =8
a rectangular hyperbola whose asymptotes  8=24+3%~
are the coordinate axes. Solving the D(24)
equations x|2 +x22 =20 and x;x, =8, we R L
find the coordinates of the intersection of NG (4.2)
these two curves as B(4, 2) and D(4, 2) in H S
Fig. 28.1. . ‘\\‘\\ > X,
As shown in the above figure, the ‘ 3= .. \:2_12
points (x| , xp) lying in the first quadrant .. B
shaded by the horizontal lines satisfy the N z=6
constraints x12 4-,\:22 <20, 120, x,20; N, o,
while the points (x; , x;) lying in the area Circlex’y +x'3=20

shaded by vertical lines satisfy the Fig. 28.1
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constraints x;x; =8, x; 20, x,20. Thus the desired solution point (x; , x;) may be somewhere in the
non-convex feasible region OABCDE shaded by both the horizontal and vertical lines.

Now we are in search of such a point (x; , x;) in the feasible region which maximize the objective function
z = 2x; + 3x; and lines in the convex part of the region. The desired point can be immediat- ely found by moving
parallel to the objec- tive line 2x, + 3x; = ¢ for some constant z = ¢. For example, we go on movirg parallel to the
objective line 2x; + 3x, =6 (for ¢ =6, say) away from the origin so long as the line ¢ = 2x; + 3x, touches the
extreme boundary of the feasible region. In this problem, boundary point D(2, 4) gives the maximum value of z.
Hence the graphical solution of the problem is finally obtained as x; = 2, x, = 4, max. z = 16.

Verification of Kuhn-Tucker Conditions :
We can also verify that the optimum solution obtained above satisfies the Kuhn-Tucker conditions.
Here we are given that
fX)=2x,+3x;, g1(%) =212, - 8, g(x) =x{’ +x; - 20,
and the problem is that of maximizing f{x) subject to the constraints g;(x) <0, g,(x) <0, and x >0. The
Kuhn-Tucker conditions for this maximizing NLPP are :

Mfx) ., 981(x) 9g,(x)
ox; M ox; *h ox;
A gi(x)=0, g(x)<0, \;,20fori=1,2;

where A , A, are Lagrangian multipliers.

These conditions are thus written as :

2=Mx; + 205 A [xx; - 8] =0 xx,-8<0
b d) A 20,A,20.

(@) {3=7~,x1 s, O M iexi-21=0 @ 2+x2-20<0 @ M20N

If the point (2, 4) satisfies these conditions, then we must have from (a) A; = V6 and A, = 15. From
(x1,x2) =(2,4) and (A, , A;) = (I, 1), it is clear that the conditions (b), (c) and (d) are satisfied. Hence the
optimum solution obtained by graphical method satisfies the Kuhn-Tucker conditions for a maxima.

Example 3. (Non-linear objective function and linear constraints).

,forj=1,2

Minimizez = x12 + xzz, subject to the constraints :
Xy +x224, 2.1'1 +XZ2 5, and X1, X2 20.

Solution. Let Ox; and Ox; be the set of rectangular cartesian coordinate axes in the plane of the paper.
Because of the non-negativity restrictions x; 2 0, x, 2 0, the feasible region will lie in the first quadrant only.

We now plot the lines x, + x; = 4 and 2x; + x, = 5. The constraint x; + x, > 4 is satisfied by all the points
lying in the region shaded by vertical lines, while the constraint 2x; + x, 2 § is satisfied by all the points lying
in the region shaded by horizontal lines only. As shown in the figure below, the region shaded by both the
vertical and horizontal lines is unbounded convex feasible region X,ABCX;. But, our object is to search for a
point (x; , x;) which gives a minimum value of x 12 + x—f and lies in the convex region. The desired point will be
a point of the region at which a side of the convex region is tangent to the circle. Now we can proceed as
follows :

The gradient of the tangent to the circle x +x7 = k (where z =k, say) is obtained by differentiating the
equation of this circle. That is,

2 426 2 2 = @
TR gm0 3y T
Gradient of the line x; + x; = 4 is — 1 and the gradient of the line 2x; + x, = 5is — 2.

If the line x; + x, = 4 is the tangent to the circle x,2 + xzz =k, then

—=-—=-1 or X1 = X, ...(ii)
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If the line 2x; + x; = 5 is the tangent to the circle x12 + x22 =k, then

de Xy

=——=-2 or x =2x. -(ii1) X

dx| X2 . .
Therefore, the point at-which the line x) +x, =4 is
tangent to the cricle is obtained by solving the equations
X1 +x3=4andx; =xtogiveusx; =2, x,=2. -
Similarly, the point at which the line 2x; +x; =5
touches the circle is obtained by solving the equations
2x; +x2 =5 and x; = 2x, to give us x; =2, x, = 1. This
indicates that :
(i) the line x;+x,=4 touches the cirlce
x12 + x22 = k at the point (2, 2); and
(ii) the line 2x;+x,=35 touches the circle
x,z + x22 = k at the point (2, 1).
But, the point (2, 1) lies outside the convex region

and hence it will not give us the desired solution. Thus,
obviously, the desired solution is given by other point (2,

2) which gives us the min. z = 224+2%=3.
Ans.x; =2, x;=2,min.z=8.

1
(\

Fig. 28.2.

EXAMINATION PROBLEMS

Solve the following non-linear programming problems graphicaily :

1. Maximize 24 = 8x12 + 2xz2 and 2. Min.z=(0x - 1)2 + (X — 2)2
Minimize zp = x; + Xz, subject to the constraints :
subject to the constraints : 0<x52,08x<1
X1Xp 2 8, x12 + xzz €9, X £2,and [Ans. x; =0, =1, min.2=2]
X1 ,X20.

4. Max.z=2x-x2+x 5. (i) Maximize z = x; ,
subject to the constraints : subject to the constraints :
2x + 3% 6 A-x)*-x%20
2x1+x2<4 Xy, X%20.

Xy, X220,

3. Min.z2=(xy - 4)2 + (X2 — 4)2
subject to the constraints :
Xt +X<6,X3-x<1
2x1+ X226, Ve xy - 2-4
Xy, X%20.
(i) Maximizez = x; ,
subject to the constraints :
@-x)’-0e-220
@-x)°+0e-2)20
X, % 20.

Also show that the Kuhn-Tucker necessary conditions for a
maxima do not hold. What do you conclude ?
[Ans. (i) x; = 1, % = 0, max. z = 1. Constraint qualification is not satisfied]

(i) x; = 3, X = 2, max. z = 3. Constraint qualification is not satisfied)

7. Min.z=4 (x; - 6)° + 6 (2 - 2)°

6. Min.z=(x;-2%+0e-17°,
subject to the constraints : subject to the constraints :
—X12+X220 05X +x<4
-X1—-X+220 31+ x5 15
X1, X220. X1+ x221
[Ans. x; =1, %=1, min.z=1} [Ans. x; = 129/29, x, = 48/29 , min. z = 7800/841]
8. Maximize z = x4 + 2x; , subject to the constraints :
x12+x'fs 1,2xy+Xx<2,and xy, X2 20.
9. Solve graphically the following non-linear programming problem (NLPP).

Maximize Z= 8xy - x12 +8xp ~ xz"’

subject to the constraints : x; + X2 < 12, x; - X S 4and x;, X, 2 0.

e e

‘[Agra (M.Sc. Math.) 99]



QUuUADRATIC PROGRAMMING
(Wolfe's and Beale's Method)

29.1. INTRODUCTION |

In Unit 2, we considered optimization techniques for linear programming problems only. Because of linearity,
we were able to develop a very efficient algorithm (called the simplex method) for handling such problems.
Unlike the linear programming case, no such general algorithms exist for solving all non-linear programming
problems. However, for problems with certain suitable structures, efficient algorithms have been developed.
Also, it is often possible to convert the given non-linear problem into one in which these structures become
visible.
The general mathematical programming problem (GMPP) can be defined as the problem of determining
x € R"s0 as to optimize (maximize or minimize) the objective function
(a) z=fx)
subject to the constraints :
(b) gix)(£,=o0r2)b;,i=12,...m
and (c) x20,
where f{(x) and g;(x) are the real valued functionsof x fori= 1, 2, ... , m and b;’s are real constants.
If may be observed that the above GMPP reduces to the general linear programming problem if
(a) fix)and (b) gi(x)fori=1,2, ..., marealllinearinx.
In such cases, the problem can be solved by Simplex Method or it’s modifications as discussed so far (in Unit
2).
As defined in the preceding chapter, the GMPP reduces to general non-linear programming problem
(GNLPP) if

either fix) and g;(x) forsomeorall i=1,2,...,m
or fx)only
or g;x)onlyforsomeoralli=1,2,...,m

are non-linear in x. Further, these functions are assumed to be continuously differentiable.

Unlike linear programming, the optimal solution to a NLPP can be found anywhere on the boundary of the
feasible region and even at some interior point of it. In recent years, several methods of NLPP have been
developed. But, an efficient simplex like technique for a GNLPP is still required to be developed. A few
available techniques for some particular cases of GNLPP shall be discussed in this book.

A well known quadratic programming model, dealing with the problem of selecting an investment
portfolio that will yield a given expected total return with a minimum variance was developed by Markowitz.
The problem often referred to as the portfolio selection model, assumes that the investor wishes to maximize
his anticipated returns while he considers variance of return as undersirable.

Supppose the total fund available to an investor is B. There are n channels of investment. The expected
return of the ith source is m;, the variance of the return of the ith type of investment is oiz, the covariance
between the return of ith and jth investment is G;;.

Hence, if an amount x; (i = 1, 2, ..., m) is invested on the ith type of investment then the expected retrun is
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n
? m; x;

The variance of the overall return of the investment is
n n
=i§l j§1 i %%
where ¢;; = o’ As higher return and lower variance are desirable quantities from the point of view of an
investor, the objective function can be taken as

n n n
f=.Z m,~x,-—.2 Z CF,jxixj
i=1 i=1 j=1
The total amount the investor can spend is B. Hence
n
z X = B.

i=1
The investor wants fto be maximized subject to the above linear constraint. The function fcan be shown to be a
concave function of the variables. The solution of the problem, thus, can be achieved using quadrantic
programming methods. Apart from the constraint given above, the problem can accomodate other linear constraints
involving the decision variables. i

Q. Enumerate the investment portfolio selection problem as a quadratic programming problem. {IGNOU 97 (Dec.)]

29.2. KUHN-TUCKER CONDITIONS : NON-NEGATIVE CONSTRAINTS ]

So far we have obtainied the necessary conditions for apointx” € R”"to be a relative maximum of f(x) subject to
the constraints gi(x) £0,i=1,2, ..., m, x 2 0. These conditions (called the Kuhn-Tucker Conditions) were

obtained by changing each inequality constraint to an equation by adding a squared slack variable s,-2,
imposing the first-order conditions (for maxima) on the first-partial derivative of the Lagrangian function, and
then simplifying the result. The following conditions are obtained :

(a) ag;‘)= n M?)ii(")’ (b)-rgi(x)=0, (c)g;(x)S0, @@X20 (=1,2,...,mi=12,...,m)
» .

i=] 'j

It has been noticed that the non-negativity constraints (x > 0) were completely ignored while obtaining these
conditions. However, we always kept in mind to discard all such solutions not satisfying the condition x > 0.

Now at this stage, we can consider the non-negativity constraints as one of the constraints and then derive the
Kuhn-Tucker conditions for the resulting problem.

The problem may be restated as follows :

Max. z=f(x), x € R", subject to the constraints :
g(x)<0and—-x<0 (fori=1,...,m).
Obviously, there are m +n inequality constraints and so we introduce (m + n) squared slack variables

s,2 , s22 s s,,f , s,,z, TR s,,z, +n in the respective inequalities in order to convert them tc the following equations :
gix) +s2=0 for i=1,2,...,m
-—xj+s,,2,+j=0 for j=12,...,n

To obtain the necessary conditions for maximum of {x), the associated Lagrangian function becomes :
m 2 n )
L(x, A, s)=fx) —igl Ailgi(x) + 5.7 —j‘_‘:llmj (=% + 5 4]

where s = (51,52, ..., Sman)y and A =(A;, Ay, ..., Ay 4 ) are the Lagrangian multipliers. The Kuhn-Tucker
7conditions are then given by
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oL_of _ % , 0gi(x)

ox; ox; i=1 ' ox +hne =0 ory= Lo

g%i=_(gi+s‘.2)=0, fori=1,2,...,m
a)iij:_(_xj.g.sjﬂ):o, forj=1,2,...,n
g_i=—2}”‘s‘=0’ fori=1,2,...,m.
asa,,,LH:n'””s'h”:O’ forj=1,2,...,n

The simplified form of these Kuhn-Tucker conditions for the problems : max z =f{x), gi{x) <0,x 20,
may be presented in the following form :

of m . 0gi(x) . .
(a) é‘£=i=zl7\,,~‘—5;j—— m+j G=12,...,n); ) Nlg(x)1=0@G=1,...,m),
(©) ~Amajx=0(=1,2,...,n), @ g(x)<0(=1,...,m):

€ A, Ay, x203=1,2,..,m;j=1,2,...,n).

Also, note that these conditions are sufficient if f{x) is concave and all g;(x) are convex in x. Likewise, the
Kuhn-Tucker conditions for GNLPP (min. case) are sufficient also if {x) is convex and all g;(x) are concave
inx.

I 29.3. GENERAL QUADRATIC PROGRAMMING PROBLEM [I.A.S. (Main) 88, 86] |

Quadratic programming deals with the non-linear programming problem of maximizing (or minimizing) the
quadratic objective function subject to a set of linear inequality constraints. The general quadratic
programming problem can be defined as follows :
Definition. Letx” and c € R", and Q be a symmetric n X n real matrix. Then, the problem of maximizing (i.e.,
determining x) so as to maximize
fX)=cx+ 11 xTQ x, subject to the constraints : ..(29.1)
Ax<bandx =0, ...(29.2)
where b’ € R™ and A be m X nreal matrix, is called a General Quadratic Programwing Problem (GQPP).
The function xTQx defines a quadratic form (see Ch. 2 in Unit 1) with Q being a symmetric matrix. The
quadratic form x' Qx is said to be positive-definite if xTQx > O for x # 0 and positive-semi-definite if xTQx 20 for
all x such that there is one x # 0 satisfying xTQx =0. Similarly, xTQx is said to be negative-definite and
negative-semi-definite if — X Qx s positive-definite and positive-semi-definite respectively. The fucntion x' Qxis
assumed to be negative-definite in the maximization case, and positive definite in the minimization case. The
constraints are assumed to be linear which ensures a convex solution space.
It may be easily verified that :
(i) if x* Qx is positive-semi-definite (or negative-semi-definite), then it is convex (or concave) in x over
allof R, and
(ii) if xTQx is positive-definite (or negative-definite), then it is strictly convex (or strictly concave) in x
overall of R".

These results help us to decide whether the quadratic objective function f{x) is concave (convex).
Notg. For easiness, we may write :
X =(x VX2, ...,Xn)T,C‘—"(C1 y 02,y ... ;Cn).b=(b1 sb2- vee xbn)rv
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We now turn our attention to the problems which are slightly more general than linear programming
problems. In such type of problems, we optimize a quadratic function subject to linear constraints. The most
well-behaved non-linear algorithm is called quadratic programming. In this algorithm, the objective function
is convex (minimization) or concave (maximization) and all the constraints are linear.

The solution to this problem is secured by the direct application of the Kuhn-Tucker necessary conditions
(see Theorem 29.4). Since z is strictly convex (concave) and the solution space is a convex set, these necessary
conditions (as proved in Section 29.5) are also sufficient for a global (absolute) optima.

We shall now treat the quadratic programming problem for the maximization case. Itis easy to change the

formuiation to the minimization
Note. (i) If Qis nullin (29.1.), we have the standard linear programming problem.

(i) The prime ( * ) can also be used for the transpose of matrix, instead of superscript ( r).

I 29.4. TO CONSTRUCT KUHN-TUCKER CONDITIONS FOR QUADRATIC PROGRAMMING PROBLEM l

We now construct the Kuhn-Tucker conditions for maximization problems as formulated in the above section.
Let us consider a Quadratic Programming Problem in the form :

.. n 1 n n
Maximizez=fx)= X cjxi+=- X X cCpxix
Aix) j=1 7T T2 g2y KTk
subject to the constraints :
n ,
j§]a,~jxjsb,~, and x;20, (i=1L2,....,m, j=12,...,n)
where cj, = c; for all j and k (for Q is symmetric); and where b; 20 fori=1, ... ,m.

Introducing slack variables q,-2 and rjz , the problem becomes :
n n n
Max. z=f(x) = jzl cxi+ V2 jz:l k§l Cjk Xj Xg

n

subject to ,Zla,jxj+q,»2=b,-, for i=1,2,...,m
J =
—x+rf=0,j=1,2,...,n (29.3)
We shall now proceed to construct the Lagrangian function
m n n
L(x, q’pa;\wr) =fx) - [ ,.E] ;"i j-z-:l (aij'{i"'qiz_bi). - jzl By (_xj+r1'2) ~(29.4)
Forming the necessary conditions, we obtain
LG ¥ 3 sm=0i= 29.5
o, x, iz'l Aiaj+W=0,j=1,...,n ..(29.5)
n 2 N
‘_2_:] ajxj+qi —b;=0 ...(29.6)
Ax<b ..(29.8)

and finally x , A and L must all be non-negative.
Rewriting the equation (29.5) we get

911:[6,4-1[2 LE] cjkxk - g] liag+|,lj=0,j=l,'2,...,n.
. L — i=

Letting q,-2 =g§; 2 0, above equation becomes
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n

m
uj+cj+ k§'1 Cik X — iEI ?\.,-a,:,-=0,j=1,2,...,n ...(29.9)

Ax+Is=b,x20,s20,A20,u 20,
andfinally A;s;=0,i=1, ... ,m; Kixi=0,j=1,...,n
One important thing to be noted here is that except for the final conditions A;s; = 0 = px;., the remaining

equations are linear functionsinx , A , i and s. The problem thus becomes equivalent to finding the solution to a set
of linear equations which also satisfies the additional conditions A;s; = 0 = W;x;. Because f{x) is strictly concave and
the solution space is convex, the feasible solution satisfying all these conditions must give the optimum solution
directly.

Wolfe suggested a solution procedure for this problem using the ordinary simplex method with slight
modification as given in the following section.

Q. 1. Derive Kuhn-Tucker necessary conditions for an optimal solution to a quadratic programming problem.

2. Obtain the Kuhn-Tucker conditions for a solution of the problem : Max f(x) = P x+ % x C x, subject to the cosntraints :
Ax=bandx20

Wolfe's Method
29.5. WOLFE’S MODIFIED SIMPLEX METHOD |

Let the quadratic programming problem be :
n

n n
Maximizez=f(x)= L cx;++ £ I cpxix
f() j=lij 2;1k=1 jkj

n
subject to the constraints : 'Zla,jxjsb,- w%20@=1,....,m,j=1,...,n)
j=

where cj = ¢y forall j and &, b, 20foralli=1,2,...,m.

n n
Also, assume that the quadratic form | Zl ‘ z | k% %k be negative semi-definite.
J = =

Then, the Wolfe’s iterative procedure may be outlined in the following steps :

Step 1. First, convert the inequality constraints into equations by introducing slack-variables q,-2 in the ith

constraint (i=1,...,m) and the slack variables r? in the jth non-negativity constraint

(G=1,2,...,n).
Step 2. Then, construct the Lagrangian function

m n 2 n 2

L(xiq:r9;"s“)=f(x)— i'—zl Ai jEI aijxj—bi"'qi —}.El uj[‘xj"'rj]
wherex=(x,,xz,...,x,,},q=(q,2,...,q,,z,),r=(r,2,r2,...,r,,z),and
A':(A']’A’Zv"-vz’m)v}‘l':(pl’uZ""?un)'

Differentiating the above function ‘L’ partially with respect to the components of x , q,r, A,n,and
equating the first order partial derivatives to zero, we derive Kuhn-Tucker conditions from the

resulting equations. . . )
Step3. Wolfe (1959) suggested to introduce the non-negative artificial variable v;,j=1,2, ..., n in the

Kuhn-Tucker conditions
n m
Cj+k§] Cik Xi — iE] 7\«,’0,']’+}lj=0
forj=1,2,...,nand to construct an objective function
Zy=Vi+Vy+...+V,
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Step4. In this step, obtain the initial basic feasible solution to the following linear programming problem :

Min.z,=v,+v;+...+v,,
subject to the constraints :
n

m
L ocpx— X Maj+w+vi=—¢ (i=1,2,...,n)
k=1 i=1

n
.z] agx+ql=b; (i=1,2,...,m),
]=

vj,k,-,uj,ijO (i=1, ...,m;j=l,...,n)
and satisfying the complementary slackness condition :
n m
,-51 W+ L Ais=0, (where 5;= g7
or Aisi=0and ;i x;=0 (fori=1,...,m;j=1,...,n).

Step 5. Now, apply two-phase simplex method in the usual manner to find an optimum solution to the LP
problem constructed in Step 4. The solution must satisfy the above complementary slackness

condition.
Step 6. The optimum solution thus obtained in Step 5 gives the optimum solution of given QPP also.

Important remarks on Wolfe’s method :

1. If the quadratic programming problem is given in the minimization form, then convert it into

maximization one by suitable modifications in f{x) and the ‘>’ constraints.

2. With the exceptional condition of complementary slackness, the problem constructed in Step 4 is
exactly the linear programming problem. So we only need to modify the simplex algorithm to include

the complementary slackness conditions. Thus, while deciding to introduce s; (= q,-z) we must first
ensure that : (i) either A; is not in the solution or (ii) A; will be removed when s; enters. This additional

check is not difficult to perform within the simplex routine and can be successfully performed.

3. The solution of the above system is obtained by using Phase I of simplex method. Since our aim (of
course) is to obtain a feasible solution, the solution does not require the consideration of Phase II, The
only necessary thing is to maintain the condition A; 5;=0 = W; x; all the time. This implies that if A, is
in the basic solution with positive value, then s; cannot be basic with positive value. Similarly,

; and x; cannot be positive simultaneously.
1 j p y

4. Itshould be observed that Phase I will end in the usual manner with the sum of all artificial variables

equal to zero only if the feasible solution to the problem exists.

Q. 1. Whatis Quadratic programming ? Explain Wolfe’s method of solving it.
2. Mention briefly the Wolfe’s algorithm for solving a quadratic programming problem given in the usual notations :
Max.z=l(x)+%x70x,s.t.Axsbandxzo.

Lo

Discuss Wolfe’s method for solving a quadratic programming problem. [Delhi (OR). 90]

4. Describe a quadratic programming problem and outline a method of solving it. [IAS (Main) 97]

29.5-1. lllustrative Examples on Wolfe’s Method :
Example 1. Apply Wolfe’s method for solving the quadratic programming problem :
Max. z, = 4x| + 6x, — 2.x12 — 2xyx, — 2x7 , subject to
X1 +2x3<2, and x;,x,20.
Solution.
Step 1. First, we write all the constraint inequalities with ‘<’ sign as follows :

x]+2x2_<.2, - X3 SO,*X2.<_0.



Step 2.

Step 3.

Step 4.
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,\c1+4x2+q12 =4
X1+ x; +q22 =2

- X +r12 =0
-X ‘ +r22 =0.

To construct the Lagrangian function.The Lagrangian function now becomes :
L(x,,%,q1,92,71,72, M, 00, 11, W) ]

= (2 + 3= 20) - My (r+4n+ gl — D -l (\+ g7 =D =W Cx )~ (Cxp+17)
The objective function z = 2x; + 3x; — 2,\112 is concave in x; , x, because the term — 2x{ represents a

negative semi-definite quadratic form. Consequently, the maxima of L (.) will be the maxima of z.
Here, we get the Kuhn-Tucker conditions as follows :
| L aL

gl'=2—4x1—llv—7v2+p,l=0, axz

Defining, q,z =5, q22 =s,,we have
Xls, = MSZ =0, HiX1 = HaXy =0, X +4.X.'2+Sl =4, X1 tXxXy+85= 2,
andﬁnallyxl » X2, 81,52, )\,1 . )vz s Hy s uZZO
To construct the modified L.P. problem.
Now, introducing the artificial variables v, and v, , the modified L.P. problem becomes :
Max. z, =—v; —Vv,, subjectto,

=3-40 - R+ =0

4x, + 0+ A+ A — |y +v =2
Ox; +0x, +4A + A, —H, +vy =3
x1+4x2 + 5 =4
x,+2xz +Sz=2

. . xl’lellvA'.Z'avlvvz’u]yqus!vSZZOs
satisfying the complementary slackness condition

Hyxy + Hoxy + A5y + Aosy =0
where we have replaced q,z by s; and g2 by s,.
The optimum solution to the above L.P. problem can be obtained by two-phase simplex method as
below :

Writing the above set of equations in matrix form, we get
- X

- - O N
NSO O
OO H =
=X -
OO O =
OO +-0O
OO O =
QO -0
O -4 00
- OO0
=
=
NE&EWN

Step 5. To obtain the initial table for Phase I.

(=]
(=

o 0 0 0 0 0 0 -1 -1

>
N
s
5
=
<
™
»
-
4

B cp XB Xy X2 A

vi - 2 (2]

V2 -1 3
5 0 4 1
52 0 2

SNV & OO
N O -~
(=]
—_O O O -
o
OO © =~ O
QIo — O ©
Q= © © O

zv=—5 - (-—Ai

(=]
o0 © © -
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This table indicates that any one of x; , A; and A, may enter the basis. But since s, , s, are in the basis,

A; , A, cannot enter the basis (" A5, = 0 and A,s, = 0). Hence x, enters the basis.
First Iteration. Introducing x, into the basis and droping v, from it, we get

= 0 0 0 0 0 -1 -1 0 0

B cp xp x1 X2 A Ay () H2 \2) 8 s2
Xy 0 %) | 0 W Ya - 0 0 0 0
v -1 3 0 0 4 1 0 -1 1 0 0
5 0 % 0 4 -V -y v 0 0 1 0
5 0 ¥ 0 [2] -V -Y% Va 0 0 0 1
z=-3 0 0 -4 -1 0 -1 0 0 0

T : {

This table now indicates that either A or A, enters the basis, but these cannot enter the basis because
5y » 5, are in the basis. Now since p, is not in the basis so that s, = 0 and therefore, we can enter x; into
the basis ( *.© poxp =0).

Second Iteration. We introduce x; into the basis and drop s,.

¢ 0 0 0 0 0 0 -1 0 0
B. B Xp x1 Xz Ay Ay i W2 V2 sy s
X1 0 » 1 0 Va Va - 0 0 0 0
v -1 3 0 0 4 1 0 -1 1 0 0
5 ] 7 0 0 Va -l 0 0 1 -2
X 0 Y 0 1 -1 - W Y 0 0 ¥
z,=-3 0 0 -4 -1 0 1 0 0 0
T {
Again A, cannot enter the basis since s, is in the basis. Also, since s is not in the basis, A, enters the
basis.
Third Iteration. We introduce A, into the basis, and drop s from it.
¢ 0 0 0 0 0 0 -1 0 0
B cB Xp x; x; A Y W 17} vz 51 s
x 0 0 1 0 0 0 0 0 0 -1
V2 -1 1 0 0 3 0 1 -1 1 -4
M 0 2 0 0 1 1 -1 0 0 4 -8
X 0 1 0 1 0 0 0 0 2 -1
zy=-1 0 0 -3 0 -1 0 4 -8 |4
d T
Fourth Iteration. We introduce s, into the basis and drop x;.
- 0 0 0 0 ()} 0 -1 0 0
B < xg x; x3 A Ay [TH] H2 V2 1 82
n 0 0 ¥ 0 0 0 0 0 0 - 1
v -1 1| -4 0 [3] o - 1 0 0
Az 0 2 4 0 1 i -1 0 0 0
x 1 va 1 0 o 0 0 1”2 0
zy=-1 4 0 -3 0 -1 0 0 0 | A
T {
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Step2. Now, introducing the slack variables q,2 s rlz , r22 , our problem becomes of the form :
Max. z, = dx; + 6x, — 2x — 2x,x, — 27

subject to X +25,+qf =2
-x + rlz =0
- X3 + 1'22 =0.

Step 3. Here to obtain the Kuhn-Tucker conditions, we construct the Lagrange function
Lixy,xp,q1,r .m0, 1y, 1)
= (41 + 65~ 20 = 2005 - 27) = My (11 + 26+ ¢ = 2) — by (C 3y + 1) = |y (— 3y + 1),
The necessary and sufficient conditions are :

oL dL

a—l=4—4xl ‘.—ZX2'- v+ Hy =0,a—x2=6—-2x1—4x2-2l|+p¢=0.
Defining s, = g , we have Aps; =0, puyx; =0, pox, =0,
Also x;+2x+s5 =2,and finally, X1.X2, 81, A1, 1y, B 20.

Step4. To constructthe modified linear programming problem.
Now, introducing the artificial variables v, and v,, the modified linear programming problem

becomes :
Max. z, = — v, — v, subject to
4x; +2x + Ay — Yy +v =4
le +4x2+27\.1 -l +v, =6
X, +2x +85=2

where all variables are non-negative and p,x, = 0, x, = 0, A5, = 0.
Now, all these constraint-equations can be written in matrix form as follows :

- X ]
X
Ay
421 -1 010 0)u| 4
2 4 2 0-1010u2=6.
120 0 000 1], 2
1
o
L S1 ]

Step 5. To constructinitial table of Phase I.
The initial Table 29.1 for Phase I is obtained by introducing the artificial variables v; and v, as above.

Starting Table 29.1*

i 0 0 0 0 0 -1 -1 0

Basic p xp X1 X2 A m W2 i v, 5
Var.

" -1 4 4 2 1 -1 ol O 0 0

vy -1 6 2 4 2 0 ~1 0 1 0

5 0 2 1 2 0 0 0 0 0 1

z,=—-10 -6 -6 | -3 1 1 0 0 0 ey
T d

Here, we compute ,
A=(-1,-1,004,2,1)-0=-6,A,=(-1,-1,0) (2,4,2)- 0=-6, etc.

We now enter first iteration in the next stcp.
Note. The notations B, ¢g , X8 , ¢;, Ajare used for modified problem obtained in step 4 (not for original problem).

Step 6. First Iteration. Since [, =0, x; is introduced into the basic solution with v, as the leaving variable.

*The column headings x4, X, .... in Table 29.1 represent the vectors associated with the variables.
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Notice that A, cannot enter because s is thé basic variable. This gives the following transformed table

by our usual rules of transformation.
First iteration Table 29.2

PN 0 0 0 0 0 -1 -1 0
Basic var. cp XB x1 X3 A TN 173 vy \7) s
Xy 0 1 m 12 1/4 ~-1/4 0 1/4 0 0
v -1 4 0 3 3n i77) - -1/2 1 0
51 1 0 3n -1/4 1/4 0| -17a 0 [1]
z,=-4 0 -3 -372 -1/2 1 3R 0 0 « A
T {
We compute A=(0,-1,0)(1/2,3,3/2)-0=-3, A;=(0,—1,0) (¥4, 32, - Va)-0=—32, etc.

Step7. Second Iteration. Since p, = 0, x; is introduced into the basic solution with s, as the leaving vector.

By usual rules of matrix transformation, we get next improved table.
Second iteration Table 29.3

¢j— 0 0 0 0 0 -1 -1 0
Basic B xp X1 x2 A m 173 vi v2 s
Var.
X1 0 23 [I] 0 173 -1/3 0 173 0 C =173
V2 -1 2 0 0 2 0 -1 0 1] -2
x 0 23 0 [1] -ws 16 0 | -1/6 0 3
z=-2 0 0 -27 0 1 t ol 2e
Step 8. Third Iteration Since s, = 0, hence A, can be introduced into the basic solution. '
Third lteration Table 29.4.
¢j— 0 0 0 0 0 -1 -1 0
B cp Xp X1 X2 M m M2 vy v2 s1
x1 0 173 [Ij 0 0 -1/3 116 1/3 ~1/6 0
A 1 0 0 m 0 -172 0 12 -1
x2 56 0 [1] 0 1/6 -1/12 | -1/6 1/12 12
z,=0 0 0 ) 0 0 1 1 0 « 8

Here all the A; are > 0. Hence this last table gives us the optimal solution for Phase 1. Since z, =0, the

given solution is feasible also.
5

 Thus the required optimal solution is given by x; = % =2

The optimal value z; can be computed from the original objective function as follows :

el )oolt) (120 2(2] %
Example2. Apply Wolfe's method to solve the quadratic programming problem :
Max. z, =2x; + x5 — x12, subject to
2x;+3x,£6,2x; +x,<4,and x; , x, 2 0.

Also, solve this problem by Beale’s method (see sec. 29.6) and verify your answer.

Solution :
Step 1. Writing all the constraint inequalities with ‘<’ sign we obtain

le +3XZ S6, le +XZS4, =X SO, -xZSO‘
Step 2. Now, introducing the slack variables qlz , q22 , r12 , r22 , our problem becomes of the form :

[Delhi (OR). 90]
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Fifth Iteration. We introduce A, into the basis and drop v, from it.

G- 0 0 0 0 0 0 0 0
B cp Xp 3] X2 A L) m [P} st 2
5 0 0 1A 0 0 0 0 0 - 1
A 0 %) -4 0 1 0 1A -1 0 0
Az 0 % 164 0 0 1 -9 173 0 0
X7 0 I 7] 1 0 0 0 0 172 0
z,=0 0 0 0 0 0 0 0 0 A

Since all A; = 0, an optimum solution has been reached for Phase- I of the modified L.P. problem. The
optimum solutionis:x; =0, x,=1, A4, =13, 0, =%, 4, =1, =0, 5, =5, =0.

These values satisfy the complementary slackness conditions : px; = 0, pox; = 0, Ays; =0, Ap5, =0,
and also satisfy the restrictions on the signs of the Lagrange multipliers.

The maximum value of z = 2x; + 3x, — 2x12 is 3.

Hence the required optimal solution is x; =0, x, = 1, max. z= 3.

EXAMINATION PROBLEMS
Use Wolfe's method to solve the following probiems :
1. Min.z= x{" + xf + x32 , subject to 2, Minz=-x1-Xp-X3+ % (x12 + xf + x:f). subject to
X +X+3x3=2 Xy +X%+x3-1<0
5x1+2x%+x3=5 4x1+2x -74£<0
Xy, X, X320. X1,X,X320.
[Ans. x; = 0.81, x = 0.35, X3 = 0.35, min z = 0.857] {Ans. x; = Xz = X3 = V4, min 2 = - 1%4g]
3. Max. f(x;, Xo) = 1.8x + 3% — 0.001x7 - 0-005xf - 100, 4. Write the Kuhn-Tucker conditions for the following
problem :
subject to the constraints : Min (x) = x12 + va + x32 , Subject to
2x¢ + 3xp < 2500, 2x1+ X% -X<0
X1 + 2xp S 1500, 1-x<0
X1,X20. -x3<0.
Also solve this problem.
[Ans. xy = x; = 500, max. z = 800} ) [ILA.S. 82]
5. Max‘z=8x1+10x-‘;-x12—x12—xz2 6. Max.z=2x1+xz-x1zsubjeclto
subject to the constraints : 2x1 + 3 <6
3x1+2x256 and xy,x220. 2x3+ Xp<4,andxy ,x 20
[Dibrugarh (Stat.) 94]
[Ans. x; = %13, X = 3313, max. z = 267/3] [Ans. Xy =24, X = 146, max. z = 234}

7.  Write the Kuhn-Tucker conditions for the following problem. Hence solve it by Wolfe's method.
Maximize f(x) = 2x; + 5% + XX ~ X2 — XF
subjectto 3x; — X S 10, x4, 2 2 0. [Virbhadra 2000}

Beale’s Method
| 29.6. BEALE’S METHOD |

Another approach to solve a quadratic programming problem has been suggested by Beale (1959)*. Unlike
Wolfe’s method, this approach does not use the Kuhn-Tucker conditions. Instead, this method involves the
partitioning of variables into basic and non-basic variables and the results of classical calculus are used. At
each iteration, the objective function is expressed in terms of non-basic variables only.

Let the QPP be given in the form : Max. f{x) = cx + 12 xTQ x, subject to the constraints : Ax =b, x 20,

* Beale, E.M.L. (1959) : On quadratic programming, Naval Research Logistics Quarterly, Vol. 5, pp. 227-243.
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L
where x=(x;, ..., x, +,,,)T ,€is 1 Xn,AismX(n+m),and Qis symmetric. Without any loss of generality,
every QPP with linear constraints can be written in this form.
The Beale’s iterative procedure for solving such type of QPP problems can be outlined in the following

steps

St:p 1. First express the given QPP with linear constraints in the above form by introducing slack and/or
surplus variables, etc.

Step 2. Now select arbitrarily m variables as basic and the remaining n variables as non-basic. With this
partitioning, the constraint equation Ax = b can be written as )

(B, R) [ :‘33 }= b or Bxg+Rxyz=b )
where xpand xyp denote the basic and non-basic vectors, respectively. Also, the matrix A is
partitioned to submatrices B and R corresponding to x and Xy, respectively.

According to this partitioning, above equation (i) can be written as
xg=B"'b-B 'Rxy (i)

Step 3. Express the basic Xg in terms of non-basic xyg only, using the given & additional constraint
equations, if any. .

Step4. Express the objective function f{x) also in terms of xypz only using the given and additional
constraints, if any.
Thus, we observe that by increasing the value of any of the non-basic variables (xyz), the value of the
objective function can be improved.
Itis also important to note here that the constraints on the new problem become

B 'R xyg<B 'b (since xp 20)
Thus, any component of xyp can increase only until df/dxyg becomes zero or one or more
components of xg are reduced to zero.
Also, note that we face the possibility of having more than m non-zero variables at any step of
iterations. This stage comes when the new point generated at some step occurs where df/dxyg
becomes zero. Geometrically, this means that we are no longer at an extreme point of the convex set
formed by the constraints, and thus no longer have a basic solution with respect to the original
constraint set. When this happens, we simply define a new variable s;, where
s; = df/ dxyp , and a new constraint s; = 0.

Step 5. At this stage, we now have m + 1 non-zero variables and m + 1 constraints, which is a basic solution
to the extended set of constraints.

Step 6. We go on repeating the above outlined procedure until no further improvement in the objective
function may be obtained by increasing one of the non-basic variables.
This technique will give us the optimal solution in a finite number of steps. For the proof of
convergence refer Beale’s (1959) research paper. Now, we shall illustrate this technique in detail by
solving a number of examples.

Q. Describe briefly the Beale’s method for solving Quadratic programming problem.
29.6-1. lllustrative Examples on Beale's Method

Exampled. Use Beale’s method for solving the quadratic programming problem (of Example 1) :

Max. z, = 4x, + 6x, — 2x; — 2x,x, — 2x7 , subject to
X +2x2$2,andx1 ,X220.

Solution. First Iteration.

Step 1.

Introducing slack variable x3, the given problem becomes
Max. z, = 4x, + 6x; — 2x{ — 2x,x, — 2x7, subject to
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Note. It can be only one variable in the basis because there is only one constraint.
X1 +2x+x3=2, and x;,x;,x;20.
Selecting x; arbitrarily to be the basic variable, we get
x,=2—2xz—x3 wherexB=(x1),xNB=[ ;;]
Step2. Expressing z, in terms of x5 , we find
SOz, x3) =4 (2= 2y ~x3) + 63, = 2 (2 = 2, ~ x3)" = 2 (2 — 25 ~ x3) x ~ 27

aflx
f,ngB) ==8+6~4(2-25,-x3) (~2) - 2 (2 - 4x — x3) - 4x,
2
Now evaluating this partial derivative at xy = 0, i.e. x;=0,x3 =0, we get
d
PN __ ¢4 6+16-4=10
ax2

This indicates that the objective function will increase if X, is increased. Now, we should observe
whether the partial derivative with respect to x, gives a more promising alternative.

)
%XN—B)=—4+4(2—2xz-x3)+2xz.
X3
At the pointxyp =0, i.e. x; = x3 = 0, we find
Axwg) _ ,
ax3

Thus increase in x; will give better improvement in the objective function.

Step 3. How much x, should or may increase.
We must now determine how much x; should or may increase. The maximum value of x; allowed to
attain is determined by checking two quantities. They are (i) the value of x, for which dfixyg)/dx,
vanishes, and (ii) the largest value of x, can attain without deriving the basic variables negative.
Then x, will be the minimum of these two.
Since x; =2 ~ 2x; — x3 and x3 = 0, x; will become negative if x, is increased to a value greater than 1.
The partial derivative df{xyp)/dx, vanishes at x, = % (for x; = 0).
Now, taking minimum of (1, 5/6), we find x, = %, and the new basic variable is X;. We now initiate a
new iteration by solving for x, in terms of x; and x;.

Second Iteration
Step4. Thus,x,=1- 12 (x; +x3)

. X
In this case, Xg= (x3) ,Xyp= { x; )

Expressing z, in terms of (x, , x3) gives,
ﬂx, ,x3)=4x| +6 (1 - l/‘ul - l&x;) "lez—le (1 - l/le - 1/2x3)-2 {1 - ‘/le - l/2x3]2

ga‘f.‘=4+6(— 1/‘2)—4x,—2xl (- '/2)-2(1 —l/ﬁx,—-l/ﬁxg)—-'l(l —Ilﬁxl—l/zx:‘) (— VZ) =]—3xl_
1

-ai=0+6(— V)-0-2x, (-\)-4(1-Vax; - Vax) (- Vo). == 1 — x4

ax3
k|, ]
01 ) _0.x=0 s | 0,120

This indicates that x; can be introduced to increase z,.
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Step 5.

If x, is increased to a value greater than 2, x, will become negative, since x, =1 — 12 (x; +x3) and
x3 =0. The partial derivative becomes zero at x, = 3. Thus, taking minimum of (2, 13) we find
x; = 15, and the new basic variable is x;.

Since(—aéi J
X3 x;=0,x,=0

has been attained. Hence the optimal solution is : x, = 13, x, = ¥, x3 = 0, max z = 2%.

= — 1 (which is negative), x; cannot become basic and thus the optimal solution

Example5. Solve the following quadratic programming problem by Beale’s method.

Max. z,= 10x; + 25x) - 10x12 —-xzz —4x1x,, subject to
X1 +20+x3=10,x, + X, +x4=9, and xy ,x3,%3,%4 20.

Also, solve this problem by Wolfe’s method and compare the efficiency of both the methods, with respect
to easiness.
Solution. First Iteration.

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Selecting x; and x; arbitrarily to be the basic variables, we obtain x; =8 +x3 — 2x5, 5 =1 = x3+ x4,

where xg = (x1 , X3) , Xyp = (X3, X4). '

Now, expressing z, in terms of (x3 , x4) gives

F (x5, %) = 10 (8 +x3 = 2xg) + 25 (1 = x3 4 x4) — 10 (8 + X3 2x4)% — (1 = x3 + x4)° — 4 (8 + x3 — 2x,)
(1 -x3+x3)

If(xns)

E =10-25-20 (8+X3—ZX4)+2(1 —X3+X4)—4(1-X3+X4)+4(1 +X3—ZX4)
3

(5311 =— 145,
*3 Jy=0,x,=0

This indicates that the objective function will decrease if x; is increased. This happens contrary to our
desire to increase the objective function. The partial derivative with respect to x, will give us a more
suitable alternative : ,
Ifxws)
—a;‘—=—20+25 —20 (= 2) (8 +x3— 2x5) — 2 (1 —x3+xg) + 8 (1 — x3 +x4) — 4 (8 +x3 — 2xy).
At the point x; = 0, x4 = 0, we obtain of (Xyg)/0x4 = 299. ‘
This indicates that increase in x, will certainly improve the objective function. So, we now proceed to
decide how much x4 should or may increase.
If x, is increased to a value greater than 4, x; will become negative, since x, = 8 +x3 —2xsand x; = 0.
The partial derivative becomes zero at x, = 29%6-
Taking minimum of ( 4 , 29%s ) , we find x4 = 4, and the new basic variables are x, and x,. We now
start with new iteration.
Second Iteration
We start with solving for x, and x4 in terms of x; and x3. Thus
x=5- 1o (x; +x3) yXg=4+ 12 (xa — xp).
In this case, Xg = (x5 , X4) , Xyg = (X , X3).
Expressing z, in terms of (x; , x3) gives
Fxy, x3) = 10x, +25 [5 = V& (x, + x3)] = 10x7 = [5 = V2 (31 + x3))° = 4x; [5 = V2 (6 + x5)]
F _ 35 (o __1s.
ax 1 - 2 ’ ax3 - 2
x,=0,x,=0 1=0,x3=0
Since both the partial derivatives are negative, hence neither x; nor x3 non-basic variable can be
introduced to increase z, and thus the optimal solution has been obtained. The optimal solution is
givenbyx; =x3=0,andx, =5, x,=4.
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EXAMINATION PROBLEMS
Solve the following problems by Beale’s method :
1. Max.z=2x;+3x; - x12. subject to 2. Max.z=2x;+2x; — 2xz2, subject to
X1 +2x%<4, X3, %20 X1+4X%<4, X+ X%<2
[Ans. x; = V4, % = 158 , max. z = 97/¢g] [Ans. x; =0, =1, max z =3}
3. Max.z=6xy+ 3x — XZ + Xy — 4x2 , 4. Min.z= 183 — 44x; — 42x, + BxZ — 12x726 + 172
subject to the constraints : subject to the constraints : 2x; + x2 < 10, Xy, X, 2 0.
X3 +X253,4X+X<9, X %20. [Ans. x; =3.8, x; = 2.4, minz = 19]
{Ans.xy =2, =1, max. z= 15]
5. Max.z="Va(2x;— X;) - Yo (x2 + X2 + x9), 6. Max.z=-4)% - 3)&, subjectto:
subject to the constraints : X1 +3X%25,x1=4x224; %1, %20.
xy-xz+x3=1,and x;, X, x320.
[Ans. x; = V8, %2 =0, x3 =74, max. Z= V&4) [Delhi (Stat.) 95]

I 29.7. SIMPLEX METHOD FOR QUADRATIC PROGRAMMING

This section deals with the solution of quadratic programming problem by the method exactly similar to

Simplex Technique in linear programming. This method can be successfully adopted to high speed

computations. We can apply this method if the constraints of the problem are linear and the quadratic objective

function can be written as the product of two linear functions, i.e. our problem is of the from :
Max.z=(cx+a) (C'x +B)

subject to Ax = b, x > 0, where y

(i) Aism X nmatrix, (ii) x,c, C aren x 1 column vectors, (iii) b ism x 1 column vector,

(iv) a., P are scalars and the prime { * } denotes the transpose of a vector.

Here it is assumed that (¢’x + o) , (C’x + B) are positive for all feasible solutions and the set ‘S * of feasible
solutions is bounded closed convex polyhedron. Also, at least two distinct feasible solutions exist. Since the
proof of the algorithm is beyond the scope of this book, we shall demonstrate the procedure by a simple
numerical example.

29.7-1. Demonstration By Example

To illustrate the procedure we consider the following example.
Example 6. Maximize z = (2x; + 3x; + 2) (x; = 5), subject to the constraints :

‘x1+x25 1 ,4x1+x222, and X1 ,x220.

Solution.

Step 1. By introducing slack and surplus variables, we convert the inequalities to equations, as follows :
X+ X+ X3 =1 (l)
4x;+xy —x3=2 ..(ii)

Substituting the value of x, from (i) in (ii), we get
4(1—xp=x3)+x3—x3=2, or 3x;+4x3+x4=2.
Thus, our problem becomes : Max. z = (2x; + 3x; +2) (x; — 5) subject to the constraints
X t+xp+ x3= 1, 3XZ+4X3+X4=2, and X ,Xz,X3,X420.
Step 2. To find the initial basic feasible solution.
Writing the constraint equations in matrix form, we get
X
111 0]f=|_[1
0 3 4 1j[x| |2
x4
Thus, the initial basic feasible solution becomes x; =1, x4 =2, x, =x3 =0, and the value of the
objective function is
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z=2x1+3x0+2)(0-5)=~20.
Step 3. Initial Iteration. We construct the following table using the symbols of simplex routine.

G 2 3 0 0 Minimum Ratio[-x—e ]
Ci- 0 ! 0 0 x3
B cp Cp Xp x; (B1) X2 X3 x4 (B2)
X1 2 0 1 1 1 1 0 11
X4 0 0 2 0 3 [4] 1 24
2V = cpxp+ 0t 0 -1 2 0 A"
=2+2=4 0 -1 0 0 A®
2% = Cpxp+ B - 23 12 - nj
=0-5=-5 — 173 -10 — 4
z=2".2%=-2 T l’

We compute AJ“) =cgX;— ¢; and Aj(2)= Cexj—c;:
AV =cgxy—c;=(2,0)(1,4)-3==1 A{P=cpxz—c3=(2,0)(1,4)~0=—2,
AP =Cpxy—cy=(0,0)(1,3)~1=—1 AP =Cyx3—C;3=(0,0) (1,4) -0 =0.
Xp

We compute 1; = min [ ]for non-basic vectors, i.e. forj = 2, 3. Thus we get

Xj
. [1.27 2 . [1 21 1
me=min| .5 =5 m=min] 1. ]=3
We now compute the net-evaluation A, to test the optimality, A is computed in this case by the formula :

Aj = (D Aj(z) + Z(z) Aj“) -7 Aj(l)Aj(Z)
Thus, we get
M=t AP + A - AV AP =X (- D+ (=) X (- D+ BX (=) X (- 1)=—4+5-28=14
Ay =2V AP + 2P ALY - AV AP = 4% 0+ (=5) (2) - Vax2x0=—10
The solution under test will be optimal only when all A;20. So, at this stage the solution is not
optimal.
We proceed to improve the initial solution in the next step.
Step4. In the above initial table, min. A; = — 10. Thus, z can be increased by taking x, into the basis. The

method of determining the departing variable and also the new values of x,-j,xg,Aj(”,Aj(z),
corresponding to new basic feasible solution, will be the same as for linear programming problem.
Minimum ratio rule indicates that B, (i.e. x4) will be leaving vector. Hence key-element is 4. We

construct the improved table as below.

¢ 2 3 0 0
C; 0 1 0 0
B Cp Cp Xp X X2 X3 X4
X 2 0 %] 1 Va 0 -l
M =cpxpta 0 ~-% Y -1 (—Aj(')
=(2,0) (2, V5)+2=13 0 -1 0 0 “a®
2¥=Cpxp+ P — % — 2 “n
=0.00(%2,)-5=-5
n2=2"2P=3(5=—i5 0 N 0 % LA

In above table, we compute
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AV =cpxy—c;=(2,0) (V4,%) =3==%5, A" =cyxy=cs=(2,0) (- Va4, Va) ~0=— 1,
AP =Cpx—C,=(0,0) (Va,%) - 1=—1, AP =Cpxs~C,=(0,0)-0=0.
=minl 2 »7_ =minl - 272

nz-mm[ RN ]—7/3,114—mm[-, 1/4]—2

8=2V AP + 2% AP - mpaAlD AP =3 (1) + (= 5) x (= 58) = B X (54) x (1) =4%..

A=2" AP +2P AL -1y AN AP =3 %0+ (= 5) x (= Vo)~ 2 x (= 1) x 0 =55,
Since all A; 2 0, we have reached the local maximum z=— 15, and locally optimum basic feasible
solutionisx; =12, x,=0,x3= 14, x, =0.
However, in this illustrative example, the local maximum thus obtained is also a global maximum but

it may not be true in general. Hence, we can use the technique of cutting plane method to obtain the
global maximum. The solution of minimization problems can also be obtained analogously.

EXAMIANTION PROBLEMS

- What is meant by quadratic programming ? How does quadratic programming problem differ from the linear
programming problem ?

. Is it correct to say that in the quadratic programming, the objective equation and then constraints both should be
quadratic ? If not, give your own comments.

- Discuss Beale’s method for solving a quadratic programming problem. Hence or otherwise solve : Min. z = xE + 3xz~2 ,
subject to the constraints :
X1+3x%25,0.5x1+2x22,and x; , X, 2 0.
[Ans. xy =%, X = 194, Min. 2 = 40%/q)
. Discuss any one method for solving a quadratic programming problem and solve :
Min. x,z + xz2 -4x; —~ 2x + 5, subject to
X1+X254, andxy, X 20.
. Discuss Wolfe's method for solving a quadratic programming problem. Hence or othewise solve :
Min.2=6-6x; + 2x‘2 - 2x1% + 2x22, subject to the constraints :
X1+x52,andxy, 20 [Delhi (OR). 93, (Maths.) 70]
[Ans. x; =%, o ="V, min. 2= 14)

. Consider the problem :

Min.z=-4x + x{" - 2x1% + 2)(22 , Subject to the constraints

2X1+ %<6, x1-4x<0, and x;, % 20.
Show that z* is strictly convex and then solve the problem by any of the quadratic programming techniques.
[Ans. x; = 3843, X =343, min. Z = 11643}

. The manufacturing and raw material costs for making each of two products A, 8 is proportional to the squares of the
quantity made. The products are made from a limited supply of a particular raw material and are both processed on the
same machine.

It takes 30 minutes to process one unit of product A and 20 minutes of each unit of B and the machine operates for a
maximum of 40 hours a week. Product A needs 1 kg. and product B needs 3 kg. of the raw material per unit which is
limited in supply of 180 kg. per week.

If the net incorne from the products are Rs. 160 and Rs. 600 per unit and manufacturing costs are 2x12 and 3x§
respectively, find how much of each product should be produced.

- Afactory is faced with a decision regarding the number of units of a product it should produce during months of January
and February respectively. At the end of January sufficient units must be on hand so as to supply regular customers with
a total of at feast 100 units. Furthermore, at the end of February, the required quantity will be 200 units. Assume that
factory ceases production at the end of February. The production cost C is a simple function of output X and is given by

C=2X2. In addition to production cost, units produced in January which are not sold until February incur an inventory
cost of Rs. 8 per unit. Assume the initial inventory to be zero. Formulate the problem as a quadratic programming
problem and show that the minimum cost solution is to produce 149 units in January and 151 units in February. The
number of units produced must be equal to the number demanded and distributed.

. Write short notes on :

(a) Quadratic Programming
(b) Application of non-linear programming problem.

M



SEPARABLE PROGRAMMING

30.1. INTRODUCTION ]

Separable programming deals with such non-linear programming problems in which the objective function as
well as all the constraints are separable. In many decision making situations, the non-linear profit or cost
functions are related by relatively smooth curves, rather than sharp curves. Thus, breaking points are obtained
on such curves. In such cases, the non-linear objective function, with a smooth curve for it, may be
approximated by a series of piecewise linear segments. This approximation will introduce some error which
may be negligibly small in many cases. Such error can be reduced much by increasing the number of linear
segments. But on the other hand, excessive increase of linear segments will enlarge the size of the problem
thus consuming more computational time to obtain the optimal solution.

Piecewise linear approximation can be done for convex as well as concave functions. It has been observed
earlier that if all the linear segments of the objective function are concave (convex), then a valid optimal
solution needs the objective function to be maximized (minimized). Similarly, non-linear constraint functions
can also be approximated by linear segments.

Thus a NLPP can be reduced (approximately) to a LPP and the usual simplex method can be used to get an
optimal solution. First we shall discuss about the separable functions.

| 30.2. SEPARABLE FUNCTIONS ]

Definition. A functionfix,,x;, ..., x,)issaid to be separable if it can be expressed as the sum of n single
valued functions fi(x1) , fo(x2) + oo s [u(Xp) , €. X1 5 X2 5 ooy Xp) =fi1(x1) + H02) + ...+ fulxn).

For example, the linear function given by

glxy, X0 ooy X)) =X+ 4. oy,

(where ¢’s are constants) is a separable function. On the other hand , the function defined by

gUx; . Xy, x3) = X1+ x7 cos (X, + x3) + X3 . 32+ log (x; + x3)
is not a separable function.

Reducible to separable forms. Sometimes the functions are not directly separable but can be made
separable by simple substitutions.

For example, in the case of maximizing z = xx; , we let y = x;x,. Then, log y = log x; + log x,. Hence the
problem becomes :

Max. z=y, subject to logy=logx; +log x,
which is clearly separable. In above substitution, it is assumed that x; and x, are both positive variables
because the logarithmic function is undefined for non-positive values.

If x; and x, assume zero values (i.e. x; , x, 2 0), we can handle the situation as follows. We define the new
variables u; and u, by the equations : u; = x| + v; and u, = x5 + v, where v, and v, are positive constants. This
indicates that the new variables u; and u, are strictly positive. Now, we can make the substitution :
X)=Up =V, Xy = Uy — Vg, and x1xp = (uy — vy) (g — v2) = WUy — Vol — Vil + Vv).

If we let y = uyu, , then the problem becomes :

Max. 2=y — vou; — viu, + vyv, , subject to the cond‘tion

log y =log u, +log u,
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which is properly separable.
Other examples of the functions that can be made readily separable are ™ **2 and x;>.

30.3. DEFINITIONS I

Separable Programming Problem. A NLPP in which the objective function can be expressed as a linear
combination of several different single variable functions, of which some or all are non-linear, is called a
separable programming problem.

Convex Programming. Non-linear programming which has the problem of minimizing a convex objective
function (or maximizing a concave objective fucntion) in the convex set of points is called convex programming.

In above definitions, nothing has been explained about the constraints of the problem. In general, we can take
the constraints to be non-linear.

Separable Convex Programming Problem. A separable programming problem in which the separate
functions are all convex can be defined as a separable convex programming problem with separable objective
function.

Thus, if f(x) be the objective function, then for separable convex programming, f{x) must be separable as

Sx) = fi(x1) + fo(x2) + ...+ fulxn)
where fi(x;) , fa(x2) 5 ... , fu(x,) are all convex.
For example, if f{x) = 7x12 + ZxZZ — 5x; + 3x;, , then by letting
fik)=Tx = 5%, and fy(x;) = 2x} +3x,
we may write fx) = f;(x;) + f2(x), where fi(x;) and f;(x,) are both convex functions.
We now proceed to.discuss how piecewise linear approximations can reduce a given separable convex (or

concave) nonlinear programming problem to a linear programming problem so that it can be easily solved by
using the simplex method.

I 30.4. PIECE-WISE LINEAR APPROXIMATION OF NONLINEAR FUNCTICN ]

n
Consider the nonlinear objective function : Maximizez = 'El fi(x;) , subject to the constraints :
J =

jil ajxi=b;,i=1,2,....,m and x;20,forallj

where f; (x;) is a nonlinear function in x;. Now our aim is to reduce the nonlinear objective function into a linear
form by approximating each f(x;) over its prescribed domain. A linear approximation for each fix) is shown in
Fig.30.1 below.

The points (ag, by) , k=1,2, ..., K are called the

breaking points joining the linear segments which
approximate the funciton f(x). Let w; denote a f(x) 4
non-negative weight associated with the kth

K
breaking point such that ' El w=1. . (ay. by
= b1 ——

Assume that additional constraints are
imposed (if necessary) so that all wy and wy but

1 | |

| 1 |

1 | |

i 1 (axboh 1 |

wy +1 are equated to zero. Then any point on the X L X
line joining the breaking points (ay , by) and ! b ! R
(ag+1,by+1) can be defined by properly ol a a, a, . as x

specifying wy and wy 4 ;. This means that such a
point will be the weighted average of (ay , by)
and (ay 41 , by + ). Keeping this point in mind, it

follows that f{x) and x can be approximated by Fig. 30.1
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K K
f(x):k):,l bkwk,wherex= kf.l Qwy ,

The necessary additional constraints for the validity of the approximation are :
0<sw <y !
0<wy<y +y,, ' i
0Sw3<y,+y,,

Oswi 1 Sy2+Yk-1,
Oswksyk—l ’

5 1, 55! 1,y,=0o0r1forallk
Pl wp=1, k:lyk_ s Yy=Vvor ora .

Now suppose that y, = 1, then from the last constraint given above all other y;, =0. The immediately
preceding constraints will then ensure that 0 Swp<yy=1 and 0< Wy +1 < y¢=1. Thus the remaining
constraints should give wy < 0 and therefore all other w; = 0 as desired.

Using above approximation, we can substitute the corresponding values of x and f{x) in the original
problem. In order to ensure the validity of approximation the additional constraints should also be added.

Obviously, the size of the problem may increase, thus increasing the computational time for an optimal
soltution.

We now consider the separable problem in the following section.

I 30.5. REDUCTION OF SEPARABLE PROGRAMMING PROBLEM TO L.P.P.

Letus now consider the separable programming problem :
Max. (orMin)z= 5w,
subject to the constraints :
,él, 8i05)<bi %20 (=1,2,....,m:j=1,2, ... ,n)

where some or all 8i(xj) , fi(x;) are non-linear.
This problem can be approximated as a mixed integer programming problem as follows :
Let the number of breaking points for jth variable ‘x;" be equal to K; and ay, be its kth breaking value.

Let wy, be the weight associated with the kth breaking point of Jjth variable. Then the equivalent mixed
problem s :

n K;
Max. (or Min)z= 'Zl kil Ji (@) wi
J'.: =

subject to the constraints

n K ‘

jZ:l kgl 8@ wy<b;,i=1,2,....m
OSWJ) Sy_/l
OSwijyj_k_l +yjk!k=2’ 3, e ’Xj~l
0< <
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K K -1
],
kg ij—l, kZI yjk_l

yu=0 or Lk=12,.. JKi,j=1,2,...,n.

The variables for the approximating problem are given by wj; and .

We can use the regular simplex method for solving the approximate problem under the additional
constraints involving y;. The restricted basis condition indicates that no more than two wj can appear in the
basis. Also, two wy can be positive only if they are adjacent. Thus, the strict optimality condition of the
simplex method is used to select the entering variable wy, only if it satisfies the above restrictions. Otherwise,
the variable wy having the next best optimality indicator (z;, — cj¢) is considered for entering the soltuion. The
process is repeated until the optimality condition is satisfied or until it is impossible to introduce new wy
without violating the restricted basis condition, whichever occurs first. At this stage, the final table yields the

approximate optimum solution to the problem.

Remark. The restricted basis method can only guarantee a local optimum to the approximate problem while the mixed
intger-programming method provides the global optimum. Also, in these two methods, the approximate solution may not be a feasible
solution to the original problem. In fact, the approximating problem may give rise to additional extreme points which do not exist in the
original problem. This depends mainly on the degree of accuracy of the linear approximation used.

30.6. SEPARABLE PROGRAMMING ALGORITHM

The iterative procedure for the separable programming problem (as defined in Sec. 30.3) can be outlined in the

following algorithm.

Step 1. Ifthe objective function is of minimization form, convert it into maximization.

Step 2. Test whether the functions fj(x;) and g;(x;) satisfy the concavity (convexity) conditions required for
the maximization (minimization) of non-linear programming problem. If the conditions are not
satisfied, the method is not applicable, otherwise go to next step.

Step 3. Dividetheinterval 0 <x;<t;(G=1,2, ..., n)into a number of mesh points ay (k=1, 2, ..., Kj) such
thata; =0, aj <a;<... < ajg =15 -

Step4. For each point ay, compute piecewise linear  approximation for each
fix)and gi(x) ,j=1,2,...,n;i=12, .. m

Step 5. Using the computations of step 4, write-down the piecewise linear approximation of the given
non-linear programming problem.

Step 6. Now solve the resulting linear programming problem by rwo phase simplex method. For this method
consider w;, (i =1,2, ..., m) as artificial variables. Since the costs associated with them are not
given, we assume them to be zero. Then Phase I of this method is automatically complete. Therfore,
the initial simplex table of Phase I is optimum and hence will be the starting simplex table for Phase
1

Step 7. Finally, we obtain the optimum solution x;* of the original problem by using the relations :

K.
x; ¥ = kil apwi =1,2,...,n).

Q. 1. What do you mean by separable and/or non-linear convex programming ? How will you solve the separable non-linear
programming problem :
n
Min. z= Jéf‘ foi (x) , subject to the constraints :151 fi ()2 bi(i=1,2, ..., m),
2. Show that if £, (x) is strictly convex and f; (x) is concave fori= 1, ..., m, then we can discard the additional restriction in
the approximated separable non-linear programming problem (SLPP) of above question and solve the resulting LPP to
find an approximate optimal sotution to SNLPP.

The following numerical examples will make the above steps clear.
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30.6-1. lllustrative Examples

Example 1. Use separable programming algorithm to the non-linear programming problem :

Max.z=x, + x24 , subject to the constraints :

36, +2x7 <9, x,20,x,20.

Solution. Although, the exact optimum solution to this problem can be obtained by inspection as
x=0,x= V9, =2.13,and max. z = 20.25. But, we demonstrate here how the approximation can be used.

Step 1.
Step 2.

Step 3.

The objective function is already present in the maximization form. So we proceed to next step.
Separable functions are : f(x;) = x; , f2(x;) =x24 and gy, (x)) =3x;, g12(x0) = Zx;,z .
Since f(x;) and g,,(x;) are already in the linear form, we left them in their present form. Moreover,

we observe that the above separable functions satisfy the concavity-convexity conditions for the
maximization problem.

The constraints of the problem suggests x; <3 and x, < Vo =2.13.
So we can take t; =3 and #, = 3 as the upper limits for the variables x, and x, respectively. Therefore,
we divide the closed interval [0, 3] into four equal parts, i.e.

a3 =0,a;<ap<ap<ay=3(G=1,2)

Step4. Now consider fy(x;) = x24 and gy,(xp) = 2::22 , it is assumed that there are four.breaking points
(K, = 4). Since the value of x, < 3, then
k %2 Sraw £126m)
1 0 0 0
2 1 1 2
3 2 16 8
4 3 81 18
This gives us
f(x) £ wa) fo(az) + wa fo(a) +was f(ay3) + Wy fo(azs)
= W21.0+W22.]+W23.16+W24.8] = W22+16W23+81W24

Similarly, for the function g,,(x,) , we have

812(x2) = way g12(a21) + w2 812(a2) + w3 812(a23) + was 812(a24)
= wy. 0+W22 . 2+W23 . 8+W24 E 2W22+8W23+ 18W24
Thus, the reduced L.P.P. now becomes :
Max. z = x; + wy; + 16 wy3 + 81wy, subject to the constraints
3X] + 2W22 + 8W23 + 18W24 <9, Wo + Wop +Was + wyy = 1 and Wa1, Woa, Wa3, Wy 2 0,
with the additional restriction that :
(i) foreachj= 1,2, more than two wy, are positive, and
(ii) if two wy, are positive, they must correspond to adjacent points.
To solve the approximate problem by simplex method :
Introducing the slack variable s; > 0, the inequality constraint is converted into an equation. Thus, the
reduced L.P.P. now becomes : ‘
Max. z =x) + wy + 16 wy3 + 81w,y + Osy, subject to the constraints :
3x)+ 2wy + 8wy + 18wy +51 =9, wy +wyy+ w3 +wyy =1 and wy;20,j=1,2,3,4.
This reduced L.P.P. can be solved by Phase-II of two-phase simplex method by treating w,, as the
artificial variable whose cost in the objective function is taken zero.
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Thus the intial simplex table for Phase-1I is given as follows :

Starting Table
= 1 1 16 81 0 0
Basic Var. cp Xg X W W3 W4 s wa1 Min. Ratio
i 0 9 3 2 18 1 0 9/8
W 0 1 0 1 4—{%---_—-—1———---0 ————— 1-- ===
z=0 -1 -1 - 16 - 81 0 0 LA
) {

In this table, the optimality indicator A; shows that wy, is the entering variable. Since w;, is artificial
basic, it must be dropped before w,, enters the solution (restricted basis condition). From the
feasibility condition (minimum ratio rule), it is observed that s; must be the leaving variable. This
means that w,4 cannot enter the solution. So we consider the next best entering variable w,3. Again
w, must be dropped first. From the feasibility condition, it follows that w,; is the leaving variable as

desired. The new table thus becomes as below :
First Iteration Table

1

16

81

0

Basic Var.

X1

W22

w23

Wl

w21

Min. (Xg/ W24)

St

w23

3

-6
1

0

1

0

—8--
1

--Vioe
1/1

-1

15

0

-65
T

0
1

16

Obviously, wyy, is the entering variable. Since wj; is in the basis, wy, is an admissible entering
variable. The minimum ratio rule indicates that s, will leave the solution. Thus we get the following

table.

Cj—)

1

Second Iteration Table

1

16

81

0

0

Basic Var.

B

XB

W22

w23

W24

s1

W21

W24

81
16

Yo

Y10

Yo
-%o0

-%0
1649

0
1

1
0

Vio
-Yio

-%0
840

w23

2=cpxp=45/2=225 3% -24 0 0 -1 -36

Step 5.

Note.

This table shows that w,; and w;, are the candidates for the entering variable. Since w;; is not an
adjacent point to the basic variables w,; and wy, it cannot be admitted. Again, wy, also cannot be
admitted since w,4 cannot be dropped. Consequently, the process ends at this point and the given
solution is the best feasible solution for the reduced L.P. problem.

Now, to obtain the solution in terms of original variables x;andx,, we consider
Wo3 = 70 s Wy = o.

Therefore, Xy = 2wy3 + 3wy =2 X (Y10) + 3 x V10) = 2.1, x; =0 and z=22.5.

it is important to note here that the approximate optimum value of x, (= 2.1) is very near to the actual optimum value

(= 2.13). However, the value of the objective function z differs by about 10% error. This approximation may be further
improved by increasing the number of breaking points.

Example2. Use the separable programming algorithm to solve the non-linear programming problem :

Max. z = 3x| + 2x,, subject to the constraints :

4x12 +x22 <16,and x; , x,20.

Solution :

Step 1.
Step 2.

The objective function is already given in maximization form. So, we proceed to next step.
v 2 2
Letus supposef(x)) = 3x; , fo(x) =2x2, gni(xy) = 4xi, gi2(xa) =x3
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We observe that these functions- satisfy the concavity (convexity) conditions. Because
fi(x1) and fy(x,) are already linear, they are left in their present form.

Step 3. The constraints of the problem suggest, x; <2 and x, <4.
We suppose that #) = 4 and ¢, = 4 are the upper limits for the variables x, and x, respectively. So, we
divide the closed interval [0, 4] into four sub-intervals of equal size. The number of sub-intervals for
x; and x, should be necessarily the same. But, it is not necessary that any one of them be of equal size.
To obtain the approximating linear programming for the given non-linear problem, we divide the
interval 0 < x; < 4 into five mesh points ap(=1,2,k=1,2,3,4,5)suchthat
a; = 0, aj < ap < aj3 < Gjq < ajs = 4,
Step 4. For each point aj;, , we compute the piecewise linear approximation for each of fj (xj) and g,; (x;). For
j=1,2andk=1,2,3,4,5, wehave
k aj Silxy) Salx2) 811(x1) 812(x2)
1 0 0 0 0 0
2 1 3 2 4 1
3 2 6 4 16 4
4 3 9 6 36 9
5 4 12 8 64 16
This gives the piecewise linear approximations :
fl(x,) = OW” + 3W12 + 6W13 + 9W14 + 12W15 s fz(Xz) = OWZ‘ + 2W22 + 4W23 + 6W24 + 8W25
g“(xl) = OW“ + 4W12 + 16W13 + 36W14 + 64W15 g,z(xz) = 0W2[ + 1W22 + 4W23 + 9W24 + 16W25
Step 5. Using the piecewise linear approximations obtaind in Step 4, we get the approximating LPP of the
given problem as :
Max.z= (OW” + 3W12 + 6W13 + 9W14 + 12W15) + (0W2| + 2W22 + 4W23 + 6W24 + 8W25)
subject to the constraints :
(OW” + 4W’12 + 16W13 + 36Wl4 + 64W]5) + (OW2] + 1W22 + 4W23 + 9W24 + 16W25) <16
Wit wptwpi+wytwis= 1,W21 +W22+W23+W24+W25= I,andwijO (i: 1,2:k=1,2, 3, 4, 5),
with the additional restriction that : :
(i) for each j , more than two wji are positive, and
(ii) if two wy, are positive, they must correspond to adjacent points.
Step 6. To solve the above LPP by Simplex Method.
We introduce the slack variable s, for converting the inequality constraint into an equation. Now, we
are able to solve the reduced LPP by Phase-II of the two-phase simplex method, treating w,, and w-,
as the artificial variables whose costs in the objective function are taken zero.
Thus we get the initial simplex table as follows :
Starting Table of Simplex Method
c;i— 3 6 9 12 2 4 6 8 0 0 0
B Cp X w12 w13 Wi4 Wis W22 W23 W24 Was 81 Wi W2
5 0 16 4 16 36 64 1 4 9 16 1 0 0
wiy 0 1 1 1 1 1 0 0 0 0 0 i 0
_wa 0 1 0 0 0 0 1 1 i [1] 0 0 1
z=0 -3 -6 -9 -12 -2 -4 -6 -8 0 0 0
T !

In this table, min. A;=—12 indicates that we must enter w5 and drop s;. But, this violates the
additional restriction. So we search for the next best vector to enter the basis. Above table indicates
that either s; or w;; can be the departing variable satisfying the additional restrictions. Here we select

wy, as the leaving variable.
Introducing w,s and dropping w;, , we get the first interation table.
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We consider the problem :

n
Min. fix) = ‘EI P{x) ..(3L.11)

J =

where Pj(x) has the form
k
Pj(x) = Cj ,'l;[] (x,-)a"f’ , _]= 1, 2, .y 1.

It is assumed that all ¢; > 0 and that n is finite. The exponents a;; are real but unrestricted in sign. The
function f{x) takes the form of a polynomial except that the exponents a; may be negative. For the reason that
all ¢; > 0 and being closely related to polynomials, Duffin and Zener have given f{x) the name posynomial.

This problem will be called as the primal problem. The variables x; are assumed to be strictly positive so
that the region x; < O represents the infeasible space.

31.5. TO DERIVE NECESSARY CONDITIONS FOR OPTIMALITY ) I

The problem (31.11) can be approached by taking the partial derivatives with respect to each x, and requiring
the result equal to zero. Thus

oP;
NRx) _ 598X o etk (31.12)
ox, j=1 Ox,
OP(x) _ 1 s T (s = % -
But, o E, G )Y ilgr(xi) =3 P, r=1k

Putting this result into previous equation (31.12) gives
1 n
— 2a, P(x)=0.
. la,, P(x)

Since each x, is strictly positive (> 0) and each ¢; >0, Ax°) will be positive. Thus, we may divide
9f(x)/9x, by Ax%), to get

n P,
A0 =1,k
J=1fx%
Let us now make a simple transformation of variables. We define
P;
yj=—%j=1,2,.n .(31.13)
Ax)
Using this definition and the necessary condition, we find that
"
Xa,y=0,r=1,.k ..(31.14)
j=1" )
B f the defi f btain  Zy=—c LP (31.15)
virtue of the definition of y;, we obtain = —e i ..(31.
yvir Yi gyl ryak

which must be equal to 1 at the optimal solution.
Thus, summarizing the results, we have

n n
Z y;=1 (normality), Zla,j ¥j=0, r = 1,....k (orthogonality)
j=1" i=
These necessary conditions are known as the orthogonality and normality conditions.
It will be more convenient to work in matrix notation. We define
I .1 N 1
A={ M An | A 0

Gy o By Y 0
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Thus, we require from normality and orthogonality conditions ,
; ; Ay=b ..(31.16)
We have now reduced the original, non-linear problem to one of finding the correct set of y which solves these

linear non-homogeneous equations.
(i) There will be no solution if Rank (A, b) > Rank (A), where ( A, b) denotes the marix A augumented by b.

1 ... 1 b
(4.b)= a.“ al',, f:,
ay ... @, b
(éi) There will be unique solution if A is square matrix and
Rank (A, b) = Rank (A)
(iii) There will be an infinite number of solutions if
n>k+1 or Rank (A) <n.

When conditions (i) exists there is no vector x > 0 for which f{x) achieves a minimum. There is a unique
minimum when condition (i) is satisfied. When condition (iii) is the result, additional work must be done to
find the global minimum.

It is interesting to note that when condition (ii) is satisfied, we simply solve fory by

y=A"'b. ..(31.17)
Thus the optimal solution is obtained (in terms of y) by carrying out simple algebraic manipulations.
We now proceed to simplify the expression for optimum value of the objective function,i.e., min. f(x).

31.6. TO FIND EXPRESSION FOR MINIMUM HXx) I

We know that at the optimal solution
f&)=Py/yj= cjilfl1 (x)% /y;[from (31,13)]
Raising both sides to the power, ‘y;’, and taking the product, we find ,
1A% = I [ [—cl] T ()% ]v] (31.18)

j=1 j=1 Yj Ji=1

n
The left-hand side reduces to fix”) because %‘. =1,

LY = (O = fix)

Since all products are finite, the orders of multiplication may be reversed on the right-hand side of (31.18)

to give us
n S\ k Vi n( ¢ Vion k j
A (5) A [ 805 ) A (A ]
=1L Ly Ji=1 j=1Ly; ) j=1{i=1
n Ci ik
=_H =L l'l (x,-)Zaijyj
J=1 ) i=1 j
Vi k
=11 51]’ M [by virtue of (31.14)]
=Ry ) i=1
n{ ¢c; \/
=11 <4 ..(31.19)
i=1 Y

n . Vi
The minfix) = fix%) =11 ( -;L ]’, and therefore
i=C D)



UNIT 5: GEOMETRIC PROGRAMMING / 61

n C; v]

Ax) z.n[i , ..(31.20)
J=1Y;

where y; must satisfy the orthogonality and normality conditions derived earlier.

When there is a unique solution for y (condition (ii) is satisfied), the problem is solved except for
calculating the values of the x; from

k
6 11 ()™ =y, fx). .(31.21)
When condition (iii) is satisfied, we must have

n
max.l'll (cj/y;)i, subject to Ay = b,
j=

n
since min f{x) = min'r{l (¢ /yj)’)'-
J =

- The above procedure shows that the solutions to the original polynomial f(x) can be transformed into the
solution of a set of linear equations in y;. We observe that Y;'s are determined from the necessary conditions for

a minimum. It can be shown, however, that these conditions are also sufficient. The proof may be seen in
Wilde and Beightler [*, p. 5.66] and hence it is not reproduced here.

The y; -variables actually define the dual variables associated with the above fix) -primal. In order to show
this relationship, consider the primal problem in the form

f00=2 3 (P/y).

Now define the function
- n 9
) =_j1:11( P;/y; )\1

n
Since ):1 yj=1and y; > 0, then by Cauchy’s inequality **, we have fly) <fAx).
j=

The function f{y) with its variables yj, y,,...,y, defines the dual problem to the above primal. Also, by
duality theorem we have ’

max f{y) = min fx).
Yj Xj

31.7. ILLUSTRATIVE EXAMPLES 1

Example 1. When n =k + 1, solve the problem :
Minimize z,=7x1 x5 ' 3xx3 24 S5x; 3x2x3 +x1x0x3 and x1,x3,x320 by geometric programming
method.
Solution.
Step 1. The function z, may be written as

- 1 - -3 1.1, 111
zo=Tx x7 ' x5 +3x) X3 x3 2+5x1 X3 X3+ X X X3.

so that

* Wilde, D., and C. Beightier, Foundations of optimization, Engliewood Cliffs, N.J Prentice-Hall, 1967.
** The Cauchy’s inequality states that for z;> 0,

n n . n
I W z,'aﬂ1(z,')”'/ where w;> 0 and Zw=1.
j= j= j=

This is called arithmetic-geometric mean inequality.
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ayy a2 ap3 a4y 1 0 -3 1
(Cla C29 C:l’ C4) = (7, 3,5, 1) and an ayy Gy ayy = =1 i 1 1 A
az) a4z a3 dy 0 -2 LI

Step 2. The orthogonality and normality conditions are thus given by

1 0-3 1] 0
-1 1 1] n

0-2 1 1||lyn]|7]o
Loy, 1

orequivalently,
y1= Oy2=3y3+y,=0
Nty t 3t =0
Oy; =2y, +y3 +y3 =0
Nty ty; tys =
This gives the unique solution, y; = V4, y; = Ve, y3 = 924, y4 = 344.

Step 4. Thus,
. (7 1224 0 W24 5 5/24 e 261750
& T\12/24 4/24 5/24 3/24 B '

Step 5. Sincez,* =min. f{x)=P/y;* or P;=y;*z.* then

- 1/ 761 761 - 1/ 761 127
7""‘21=P'=5("§H]=ﬁ’ 3"2"32=”2=g[5)=—5-
_ 5 r 761 317 1, 761 19

5xi 3x2x3=P3=24[ 50 Jzﬁ' x'x2x3=P4=§( 50 le"'

The solution of these equations is given by x;" = 1315, x, =1.21, x3 = 1.2,
Which gives the optimal solution to the primal problem.
Example2. When n >k + 1, solve the problem :

Min. z,=5x,x; '+ 2x] ]xz +5x +x5 !
by geometric programming.

Solution.
Step 1. The orthogonality and normality conditions are given by
-1 10 ;T' 0
-1 1 0-1 2i=lo|
T T B O 1
Y4

Step 2. Since n > k+ 1, these equations do not give the required yj directly. Thus solving for y; y, and y3 in
terms of y4, we obtain
1 -1 1 Vi 0
-1 I 0 »2 = Y& |
1 1 1 Y3 1 —Ya

or equivalently, yi=Y2(1=-3y), y2=V2(1 -9, y3=ys
Step 3. Now, the corresponding dual problem may be written as

Max o 5 (1=3y,)/2 2 (1-.\'4)/2x 5 V4 1 V4
L VA (1=3yy) Va(l — y4) Vs Yo’

This becomes a problem of maxima of one variable only. So dur forward te¢hnique of differential calculus
may be easily applied. Taking logarithm on both sides, we get F(y,) equal to
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First Iteration Table

= 3 6 9 12 2 4 6 8 0 0
B 3 Xp Wiz wi3 Wig wis W22 w23 W24 Was 8 Wi
5 0 0 16 36 64 -5 -12 -7 0 1 0
wiy 0 1 1 1 1 1 0o - 0 0 0 0 1
was 8 1 0 0 0 0 1 1 1 1 0 0
z=8 -3 -6 -9 -12 6 4 2 0 0 0
) x x 1
Form this table, we observe that any of the variables wy;, w3, w4 and wys corresponding to
A, A, , Ay and A, respectively can enter the basis. But, in order to satisfy the additional restriction,
we decide that w,, enters the basis and s, leaves it. Thus, we get the following second iteration table.
Second iteration Table
¢ 3 6 9 12 2 4 6 8 0 0
B cB XB Wi2 Wi3 Wi4 Wis w22 W23 W24 Was 1 Wi
wia 3 0 1 4 9 16 ~1% -3 - 0 ) 0
Wiy I 0 -3 -8 -15 1% 3 Va 0 - 1
was 8 1 0 0 0 0 1 1 1 1 0 0
z=8 0 6 18 36 -2y -5 -3 0 Ya 0
1 !
Introducing w,4 and droping wy; , we get the following third iteration table.
Third Iteration Table
¢ 3 6 9 12 2 4 6 8 0
B CB XB W12 Wi3 Wi4q Wis W22 W23 W24 W25 St
wia 1 1 1 1 1 0 0 0 0 0
Waa 44 0 124 34 604 154 124 1 0 -
Wwas ¥ 0 124 3% 804 -8 —84 0 1 ¥
z=% 0 ¥ % % 1% % 0 0 4
Since all A; 2 0, the optimal solution of the reduced LPPis:
wya = 1, wyy =47, and wys = 37, remaining w’s are zero.
Step7. To calculate solution of the original problem.

The optimal solution to the given non-linear programming problem can be obtained by the formula :
. 5
Xj = k§l ajijk, j= 1,2

Thus, we get
X} = aywy) + apwi + apwis + agwig + aswys = (0)(0) + (1)(1) + (2)(0) + (3)(0) +4(0) =1
Xy = Gy Wy + AWy + AWy + agawag + azswas = (0)(0) + (1)(0) + (2)(0) + 344y + a3 =
Hence the optimal solution to the given problem is finally obtained as :
x; =1, x; =241, max. z=6%1.

EXAMINATON PROBLEMS
Solve the following problems by separable programming algorithm :

Max. z = (xy - 2)2 + (X — 2)22. 2. Max.z2=16-2 (xq - :?»)2 - (- 7)2
subject to the constraints : subject to the constraints :
Xy +2x<4 x12+xzs16,
X1, X220 X1, %20
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[Ans.x; =16, X = 1.2, Max. 2= 0.8] [Hint. Let fy(x;) = 8 ~ 2 (x; — 3)2 and f(x2) = 8 ~ (X, — 7)° and
proceed in the usual manner.]
[Ans. x; =3, x, =7, max. z = 16}

3. Min.z=(q- 2)2 + (- 1)2 4. Show how the following problem can be made separable :
subject to the constraints : Max. Z = XX + X3 + X1 X3
(i) - x,z + X2 20 subject to
-Xy —Xp+220 XyX2 + X2 + X1X3 < 10,
X1,X220. X1,X2,X320.
[Ans. x1 =1, %=1, min.z=1]
(ii) X1 —2x+1=0.
—%x,z—xz2+ 120
X1,X%20.
[Ans. x; =0.82, %, =0.94 , min. z = 1.4]
5. Consider the problem: 6. Find the minimum of Ax) = (x4 + 1)2 +(xp — 2)2 , such that
Max. z = xy X3 , Subject to X1 —-2<0,%-1<0, and x;, x> 0.

x,2+X2+x354,and Xy, X% ,X20

Approximate the problem as a linear programming
mode! for use with the restricted basis method.

7. Maximize z = 3x12 + 2x22 , such that x,z + xzz <25,9x - xzz <27,and x;,x,20

Solve the above problem for x; and x; and find the optimum value of the objective function.
8. Consider the NLPP : Min. z = x? + 2xZ - 2x, , subject to the constraints : x? + x2< 4, and x; , % 2 0.

Is this problem a convex programming problem ? If not, indicate how wilf you proceed to solve this problem.
9. Show that the non-linear non-convex programming problem of minimizing

> 5
f(x)=ag+ bgy X1 + ( _}:2 bo; x; Jx1 , Subject to the cosntraints :
j=

5
0 < ajixq +( ,21 a,;.-x,-)x, <bi(i=1,2,8), isx< ui,j=1,2,3,4,5
l=

can be transformed into (a convex) LPP by setting
Yi=xx1(=1,...,5) and y; =x;,where
a , by, aj, b, I;, and u;are real constants.

e e K
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31.8. FORMULATION OF GEOMETRIC PROGRAMMING PROBLEM : WITH
EQUALITY CONSTRAINTS

We shall now discuss the case when we wish to minimize an objective function which is a sum of polynomials
subject to equality constraints of the same form, i.e.,

Pi
Minimize z, = f{x), subjectto g,(x) =X C;,P;,,(x)=1,i=1,...m
r=1
where P;, denotes the number of terms in the ith constraint and

k
P;(x) =jI=-Il (‘xj)airi~

31.9. TO OBTAIN ‘NORMALITY’ AND ‘ORTHOGONALITY’ CONDITIONS

Although the notations are somewhat awkward, the concept is the same as we have discussed previously. We
first form the Lagrange function,

Lty 1) =)+ E 4 [ - 1]

and require
) OL_ o 9 2,080 o 3
1) axl—O— o, +i§17»,~ ox, I=1,..k (i) a}\i—O—g,-(x)—l,t—l,...,m.

We note here that our constraints are of the form gi(x) = 1. Thus, infact , so long as the right-hand side is
positive we may obtain this form by a simple linear transformation. The case when g;(x) =0 is not
permissible, because our solution space requires x >0. When the right-hand side is negative, solution
procedures have been obtained, However, the arguments are beyond the scope of this presentation. The
interested students may consult the Selected References.

Let us investigate the condition (i) in more detail.

n q; P; m Piay, P,
_@_L_=0=2M+ E}"i za‘_"_@.
ox; j=1 X i=l | r=1 X

We may again introduce variables y; and y;, as follows :

We may define, Y= —1){)—, Vir= ﬁfo"j ...(31.22)
fxY) fx)
Again, remember that Jélll yi=1 ..(31.23)
Furthermore, we have orthogonality conditions
jéf] a3+ gl ,gl""” yo=0,1=1,..k (31.24)

This condition comes from substituting the definitions of y; and y;, into dL/ ox;=0.
In the unconstrained case, the yj were all positive, since
' yi= Pj/f(xo) >0. ..(31.25)
In the equality-constrained case, the y; are again positive. However, the y;, may be negative, because we
do not require A; to be non-negative. It is desirable to have all y; > 0 to construct a dual function. Also, we
note here that if we reverse the order to construct the Lagrange function, the sign of the Lagrange multipliers
will change. Hence, if we face one problem where one of the A;, is negative, we can reverse its sign simply by
writing that term in the Lagrange functionas A, [1 — g (x)].
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1-3 1- .
log 2, =" [log 10~ log (1 - 3y)] + —2* [log 4 — log (1 - ;)] + , [log 5  log yq + (g1  log y)]

The value of y, maximizing log zy must be unique (because the primal problem has a unique minimum). Hence,
differentiating with repect to y, we get.

OF 3 2 3
5= 3o 10—[ [ ——J+( —5]log(l—3y4) ]+(— V9) log 4 - [(= ¥2) + (= 12) log (1 - y,)]

2
+log 5 —[(1 +logy,) +log 1 —[1+log y,].
But, by necessary condition of maxima and minima, we must have

dF/dy,=0.
Thus, after simplification, we get
1032 1=3v)%2 (1 = yi2 1= 3y (1
_ log[ 2x 107 | g Um0y 2 (=3, ¢
3 Va4 Ya
which gives yZ = (.16. Hence y; =0.16, y2=0.42 and y? =0.26
R 5 Y2 5 \'6 Y 9.506
The value of z_,=z.‘,=('.% —4‘2—) (]_6 16 =7 .
Hence Py3=.16x9.506 =1.52=5x,, P;=.16 x9.506 = 1.52 = x; .
The solution here gives x; =.304 and x; = .66.

Example 3. (Inventory problem). In the economic lot -size problem :
. ) . Minimize fig) =12 Cyq+ CyR/q,
to find the optimum iventory level.

Solution. In this example, P; = q', ay=1,P,=q"" a,=-1
we have two y’s one for each term. Forming the normality condition, we obtain yi+y:=1

2
The orthogonality condition _Elalj =0gives Ly, +(~1)y,=0 or y, -y, =0.
j:

From this, we deduce thaty, =y, = 14

y y. 172 172
C,/2Y'(RCyY: (Cy/2 RC
f(q*)z( l ( 3] =( 11/2 J (’/23J Teaan

i

Y Y2
and from the defining equation for y,, we have

* 1 i
yf(g )=5GC Py=5Cgq
Thus Y2 V(2C, CiR) =12 Cy q, org* =V(2C3R/C})
Alternatively this formula has been proved in ‘Inventory Management’.
EXAMINATION PROBLEMS
Using geometric programming, solve the following problems :
1. Minimize fx) = cyxy 1xz' ! X3 'y CoX2 X3 + CaX1X3 + Crxyxpwhere ¢;>0, x;>0,i=1,2,3,4andj=1,2,3.
[Ans. Min. fx) = (5%¢)*"* 5A)"® (5¢4)'%)

2. Minimize fx) = 5x,% 'x3 + X7 2x5 ' + 10x3 + 2x7" 'xox3 2, and x;,,% 2 0
[Ans. Min. fx) = 10.28, x; = 1.26, x, = 0.41, x, = 0.59]

3. Minimize f(x) = 2xy + 4x, + 712- subjectto x;,x 0.
1X2
[Ans. Min fix) = 112.9; xy = 14.1 and x; ='23]
4. Min. z=4x, + XX 'y 4xy 'xz subject to x3,x 2 0.

5. Min. z =40xy ‘x{ 'x3' T4 40x2X3 + 20x1x2 + 10X1 X3 ; Xy X2,X3 2 0.
[Ans. x; =2, x; =1, x3= "%, min z = 100}

6. Max.z=2x ’,\’; +xe 2+ 4x$ subject to xq,x 2 0.
[Ans. The necessary conditions are not satisfied for XXz 2 0. The problem has an infimum at x;=0, 6.z~ 0 as
xj— 0 forall j.




GEOMETRIC PROGRAMMING

| 31.1. INTRODUCTION |

In this chapter, we shall focus our attention on a rather interesting technique called ‘geometric programming’
for solving a special type of non-linear problems. This technique is initially derived from inequalities rather
than the calculus and its extensions. This technique was given the name ‘geometric programming’ because
the geometric-arithmetic mean inequality was the basis of its development. Geometric programming,
developed by R. Duffin and C. Zener (1964), finds the solution to the problem by considering an associated
dual problem (to be defined later). The advantage here is that it is usually much simpler to work with the dual
problem than with the primal.

This chapter will present the unconstrained case of geometric programming, and to do this, we shall
derive the inequality using the classical optimization theorem developed in chapter 27 of this unit. Then using
the inequality, we shall indicate how these relationships may be used to obtain optimal solutions to non-linear
problems. It will be observed that when the problem has a special structure, the solution may be obtained
simply by solving a set of linear equations.

The objective here is only to familiarize the readers with this type of analysis. Those interested in more
details may refer to the excellent book by Wilde and Beightler (see the references) for a more detailed
treatment of the subject.

31.2. FORMULATION OF GEOMETRIC PROGRAMMING PROBLEM
(UNCONSTRAINED TYPE)

The objective and constraint functions in the problem that geometric programming deals with are of the
following type.

We wish to maximize z=fx) =11 x ..(31.1)
j=1

n
subject to _lej=c<oo, ijO,jzl,.‘.,n.
J:

The maximum will obviously not occur where any of the x; = 0 since f{x) is also zero at this point. For the
moment we shall ignore these inequalities and solve the simpler problem :

Max. fix) =v1"'{]x, .(312)
e

n
subjectto X xj=c<oo
j=1

31.3. TO FIND GEOMETRIC-ARITHMETIC MEAN INEQUALITY

n n
The given problem is : Max. f{x) =.H]xj, subject to_Z]xj = <oo,
j= j=

Forming the Lagrange function, we obtain
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n
Lx, M) =f(x)+7»[.21xj—c J .(31.3)
J:
The necessary conditions are '
oL 2 .
ax, —j=¥?[j_ic]~'_+7\.—0,t—l,2, vy M. ..(31.4)
n
Solving for A, we find A=-Tlx ..(3L.5)
j=Lj#i
But, i can be any integer from 1 to n and so we can write
n
=j; ﬂf’k ..(31.6)

Now, equating the two results (31.5) and (31.6), we obtain
X1X2e oo Xj—§ Xjg 1oy = X1 X200 X4 1o+ Xppe

Since we have assumed x; # 0, we obtainx} =x{ =a for all i, k=1, 2, ...n where ais some constant.

n n
But, Lxj=c=Xa=na.

j=1 j=1

n
Thus, K=a=c/ni=1,.,n andfix*) =11 (—C—]:[ET'
j=1\n) |n
We have thus proved that Max. fix)=(c/n )n.
Then it follows that fix) < (c/n)", ..(3L.D)
[/
where ¢ = 5:'. X;.
j=1
n n
Therefore, fx) =jl='[]x- < [ji.‘.lxj /n I \ ...(31.8)
Now, taking nth root of each side gives
n I/n 1 n
[jl;]lxj ] < ;jz.‘.]x- ..(31.9)

with equality only when x; = ¢x. This is the geometric-arithmetic mean inequality.
We have obtained an upper bound on fix) or looking at the problem differently, a lower bound on
[“1') }Exj, where
n s

1 n 1/n
- ijz( ij] ...(31.10)
nj=1t j=1

Optimization problems may be approached from either viewpoint. We again encounter the dual relationship

discussed in chapter 7 of author’s book ‘Linear Programming and The Theory of Games’. The dual problem will,
in many cases, be easier to solve.

31.4. MORE GENERAL FORMULATION OF GEOMETRIC PROGRAMMING PROBLEM
(UNCONSTRAINED TYPE)

A more general form of the inequality (31.10) is
n n
v,
- j§] y_’xj ZJI;I] ('x“])‘ly
where y;’s are non-negative weights whose sum is unity. Zener, Duffin, and Peterson used this result to derive
the geometric programming relationships. However, we shall pursue an argument more closely related to
classical optimization theory. This approach is suggested by Wilde and Beighter (1967).
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We are again, in certain cases, able to construct a highly non-linear problem as one of solving a system of
linear equations,

n n m Pi
_Zl){,' = 1 (normality), ‘zlalj ¥j +,Z'.1 Zla,-,l yir=0;1=1,...k (orthogonality)
7= 1= =l r=

When these equations have a unique solution, the optimal solution of the original problem has been
obtained. All that is required is that x°) and x be calculated from the definition of yj and y;,. In the case when
there are infinite number of solutions, we must again resort to maximizing the dual function given by

n Yim| P C,iVi |m
z, =ﬂy)=H[ﬂ] n[ z[—i]" 1n X , (31.26)
: =1y ) i=lr=4 ¥y =1

where V; = z Jir subject to orthogonality and normality conditions.
r=

Although the function in (31.26) may seem to be very complicated to work with, it will appear to be much
casier to handle than the original problem. The reason is that the constraints are now linear. In addition, we
may have a choice to work with the algorithm of the dual function which is linear in the variable
8, = log y; and §;, = log y;.. The following illustrative example will make all these concepts clear.

 31.10. ILLUSTRATIVE EXAMPLE ]

Exampled. Solve the geometric programming problem
Minz,=2x)x; S dx g 24324 x\x, subject to 10x; lx% =1.

Solution.
Step 1. The corresponding dual function is given by

2 Y/ 4 Y2032 Y301 Ve v
=] — — P — Va)y*
w0 ) () (5 (e e
and the constraints are :

y+yr+tys= 1L yi—y+y3-ya=0, =3y =2y, +y3+ 2y4=0.
Step 2. Expressing each y;in terms of y;, we obtain y, =1—®3) y;, y3 = 3y, ya=(83)y; ~ 1.

2 Vi 4 1 -3y, 32 3y, ®) y. - 1
Thus, z, = Ay)) =| — _— 24 0.1)"n
y =00 ()’1] ((1—<4/3)y1 ) (YI] (

Step 3. Now working with this maxima-minima problem of single variable, we take logarithm of both sides
of

2 4 b 32 (8
Fiy) =lo =y log=+(0-¥By)log—F—+Flog—+|Zy;—1|log0.1
() =log [RyD] = g3, ( ) BT 45y, T 3 g3 (31 ] g
Differentiating w.r.t. y;, we obtain

46
g—;=]og%+2———3&£+log%+§log0.l
which becomes zero at y; = 0.662. Thus, we gety, = 0.217, y3 = 0.221, y4 = 0.766.
Step 4. Now, with the help of these variables, we can compute x;, x; and f{x) from the definition of y; given
by eqn. (31.22) :
Pl ZXIX{Z Pz _ 4.X]_IXZ_2 _ P3 _ 32x‘x2 _ P4 _ 0.1 Ka.xa- lx;
T T 0 T ) a0
Dividing y; by y; we get y;/y;=3=(316) x; 4 or x4=Vi6 or x,=Va.
From the costraint, we know that 0.1 x; (12) ™ 2=1 or x,=25.
The values are consistent with the values obtained by using the definition of y; and ys.

2
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[ 31.10. PROBLEM WITH INEQUALITY CONSTRAINT |

The similar conditions and dual function can be obtained when there are inequality constraints of the from
gi{(x) < 1. The proof of the orthogonality conditions is left as an exercise for the students. The dual function is
again obtained through the use of inequalities. The interested ones should consult the Selected References to
see further as to how one arrives at the dual function (31.26).
We can use the dual problem [(31.26), (31.27)] to obtain bounds on the optimal solution. Since
N SOZRO2AD .(3128)
We can select any feasible x, say x, and any feasible y, say y, and now the optimal solution is bounded
by
AX) 2 fx°) 2 AY). (31.29)
‘This gives convenient stopping rule in the case when there is no unique solution to the orthogonality and
normality conditions, and we approach the problem using some direct methods to maximize the dual.

EXAMINATION PROBLEMS

Solve the following problems by geometric programming :
Min. 2, =2x, ’x§ + x?xz“2 +4x, and X1,%2 2 0.
l\)lin. Z,=5x1% 1)(% +x7 06+ 10)(3 +2xy 1x2'32, and x1,%2,X3 > 0
Min. z, = 2},’x2' 3, 8x1 ax2 + 3x1X2, and xy. %2 > 0.
Min. z, = Z)ﬁx{ 34 4x, 2x2 + X)X + 8x1Xz ! and X1,% 2 0.
Min. z,=5.x1/x3 + 10)?1X2 +3/x1, and xy,x2 2 0.
Min. z, = x1x2/)é +2 X3/ X1 X2 + 5X3.
Set-up the necessary conditions to solve the following problem by geometric programming :

Min. zy=3x/x% + .\’?/)q + xzxz, subject to Va. Xz/Xg + Voxoxy =1, 2( 1/? )+ 4( xz/xp )= 2.

N s N

Fele



FRACTIONAL PROGRAMMING

32.1. INTRODUCTION |

In this chapter, we shall discuss a newly developed important technique of mathematical programming which
is named as Linear Fractional Programming. This technique is used to solve the problem of maximizing the
fraction of two linear functions subject to a set of linear equalities and the non-negativity constraints. This
problem can be directly solved by starting with a basic feasible solution and showing the conditions for
improving the current basic feasible solution. In order to test optimality of the solution we shall establish the
optimality criterion. Ultimately, the problem can be easily solved by the method which is similar to ‘Simplex
Method’ of linear programming.

I 32.2. IMPORTANCE OF FRACTIONAL PROGRAMMING IN PRACTICAL SITUATIONS

The linear fractional programming problems have recently been a topic of great importance in non-linear
programming. J.R. Isbel and W.H. Marlow (1956) discussed an example of fractional programming. In
Military, programming games have this form when troops are in the field and the decision to be taken is how to
distribute the fire among several possible types of targets. The fractional programming method is useful in
solving the problem in Economics whenever the different economic activities utilize the fixed resources in
proportion to the level of their values. In financial analysis of a firm , the purpose of optimization is to find the
optimum of a specific index number, usually the most favourable ratio of revenues and allocatxon Therefore,
such type of problems play an important role in ‘finance’

32.3. MATHEMATICAL FORMULATION OF LINEAR FRACTIONAL PROGRAMMING

PROBLEM
Mathematically, the linear fractional programming problem can be formulated as follows :
Max.z=(c"x+)/(C x+B) ..(32.1)
subject to the constraints :
Ax=b,x 20, ..(32.2)

where (i) x,¢,and C aren X 1 column vectors, (if) Aisanm X nmatrix, (iii) Bisanm x 1 column vector
(iv) The primes {’ } over the vectors ¢ and C denote the transpose of vectors, and
v a, |3 are some scalars.
Further, it is assumed that the constraints set S = {x | Ax = b, x > 0} is non-empty and bounded.
Charnes and Cooper (1962) solved the above problem by resolving it into two ordinary linear programming
problems (under transformation y = £x) :
Prob. 1. Max. ¢’y + o, subject to the constraints :
Ay -br=0,d'y+pr=1y20,r20.
Prob. 2. Max. — ¢’y — o, subject to the constraints :
Ay-bt=0, -d'y-Pt=1,y20,220.
But in the following section, we develop an algorithm for the solution of programming problems with
linear fractional functions without converting it into linear programming problems.

32.4. LINEAR FRACTIONAL PROGRAMMING ALGORITHM l

Let us consider the linear fractional programming problem :
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CMax.z=(c"x4+0)/(C'x+pB)
subject to the constraints :
Ax=b,x20,
with the additional assumption that the denominator is positive for all feasible solutions.
(a) Notations used. Let xp denote the starting basic feasible solution such that

Bxp=b or xz=B"'b,x 20,
WhereB = (ﬁl; Bz,---,ﬁm)- -
Further, we let 2" = ¢’gxg + otand 2@ = C'pxp + B, where ¢’gand C'p are the vectors having their
components as the coefficients associated with the basic variables in the numerator and the denominator of
the objective function, respectively. Also for basic feasible solution, we assume that
—p-! () _ v Q) _ v
Xj—B aj,zj —CBX]’,ZJ —CBX}'
are obtainable for every column a; belonging to A but not to B.
(b) How to improve the initial basic feasible solution. In order to examine the possibility of

determining another basic feasible solution with the improved value of the objective function z =z"/z?, we
are concerned only to those basic feasible solutions in which only one column of basis matrix Bis changed.
Let the new basic feasible solution be denoted by x5. Then

A A—l A A A A
xz=B"'b, where B= (B, B, B

.....

Thatis, a pew non-singular matrix is obtained from B by replacing B, by a;. Thus, the columns of
the new matrix B are given by

B.=B; %), B, =a,

Now, we find the value of the new basic variables in terms of original ones and the Xij, i.e.

A XBi . A XBr
Xpi=Xpi——_ Xp (i#71), xp,=——=80 (say)
Xrj Xrj
m

where a; = X x;; B;.
i=1
After determining the new basic feasible solution it remains to justify whether ‘z’ is improved. For this,
value of the objective function for the original basic feasible solution is z=z"/z%.
Let the new value of the objective function be z=2"/72%. '
Therefore, we have
20=2-8z"~¢) and 2?=2Y-0(P-C)
where z,(»” and z}z) are associated with the original basic feasible solutions.
Now the value of the new objective function will improve if
2V -6(z"~c) 20 z“)—ﬁ(z(i’)—cg) 20 0
P-0@P-c) @ " P e@®_c) 2@
22 [V -0V - )1 -2V 2P - 8 - C)] > 0
(since denominator of the ol;(jective function is positive for all feasible solutions, i.e. 2(2) and 2% are positive)

or 229 -0(? - ) 122 [V -8(zP - ¢)1<0 .
(6 = xp,/x,; is positive in the non-degenerate case, andif 6 = 0, thenz =z
Let us denote A= 2P [ 29 -9 (zj(»z) -C)1- 2? [zm - (-)(zl(-l) = ¢;) ] (say)

NOW, A] > 0 under the fOllOWing three cases.
1
(z} ) — c]) z(l)

PEONEIRE?)
(zj()_q) el

Case 1. If z}”—- Cj> 0, then
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M _cy L0
Case2. If z}z) -C;<0, then M > z_
¥ (z]( ) _ C] ) z(2)
Case 3. If z”) - C;=0, thenz{" - ¢;>0.
We now prove the following theorem :

Theorem. Given a basic feasible solution xg=B~'b. If for any column vector ajin A but not in
B, A; > 0 holds, and if at least one x;; >0 (i =1, 2,,... m), then it is possible to obtain a new basic feasible
slglutton by replacing one of the columns in B by aj and the new value of the objective function satisfies
22

Proof. We now wish to show that for any a;in A butnotin B at least one x;; > 0.

If possible, let us suppose that all x; <0 (i=1, 2, ..., m). The basic feasible solution is given by

m
iElei Bi=b (1)
Now suppose that we add and subtract 0a; (8 is any scalar) to (i,) then we have
m
.?lei B,-+Gaj—98j=b (ll)
. m
Since ~-0a;=-6 le,;,- B ... (iii)
1=

using (iii) in (ii), we have
m
.§I(XB,' - Bxu)ﬁ, + eaj =b.

If 8 >0, then xg; — 6x,~j 20.
Since by assumptionx; <0 (i=1,2, ..., m),
Xg) — exlj, Xgy — eij soers XBm — mej,
and 8 = xp,/x,; is a feasible solution for all 6 > 0. Thus, the set S of feasible solutions is unbounded contrary
to our hypothesis.

Thus, we have proved in the algorithm that if we begin by basic feasible solution and if the vector a; is in A
but not in basis having

Aj< OA (iv)
then we can get another basic feasi,ple solutionsuchthatz2z.

Inthe absence of degeneracy z is strictly greater thanz, i.e. Z > z. This means that we can move from one
basic feasible solution to another, changing one vector at a time so long as there exist some a;inA butnot in
B under the condition A; < 0, and at each iteration z is improved (i.e. increased in the case of maximization).

(c) Convergence of algorithm. The algorithm cannot continue indefinitely. The reason is that there
exists only a finite number of basic feasible solutions and in the absence of degeneracy no basis can ever be
repeated, because z is improved at every step and the same solution cannot yield two distinct values of z,
while at the same time the optimum has to occur at one of the basic feasible solutions. So the process will
terminate only when all A; 2 O for the columns of A but notin B. But, for the columns of A belonging to B, we
have

) _ o e -1 _
Zj —CBXj—-CBB aj—ch ﬁj—-Cj,
and Zj(z) = C’B XJ= C,B B-] aj=C’BB_‘Bj=C}.
Hence A; = z) (zj(z) -¢j) - Z? (zj“) -¢j)
(d) Summary of above discussion. Now the results obtained from the above discussion can be

summarized as follows.
If the problem : Max. z = (¢’ x + )/ (C’ x + B) subjecttoAx=b.x20,
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has a basic feasible solution xz = B~ 'b with
z* = (gxg+ )/ (C'gxg+B)

such that A; 2 0 for every column a; in A, then z* will be the maximum value of z and the basic feasible
solution will be an optimum solution.

32.5. COMPUTATIONAL PROCEDURE OF FRACTIONAL ALGORITHM ]

The followmg numerical example can better explain the computational procedure of linear fractional
programming algorithm.
Example. Consider the fractional programming problem
5x; + 3x,
Sxi+2x+ 1
3x;+5x,< 15, 5x+2x, <10, and x;,x,20.
Solution. Introducing the.slack variables x; 2 0 and x4 > 0, the problem in the standard form becomes :

Max.z= , subject to:

M 5y 43, 0 biect &
ax.z= St + 25+ 1= (2) (say) , subject to :

3x; +5x+x3 =15, 5x;+2xy+ x4 =10, and x;, x,, X3, x4 2 0.
For the starting table, we find A; =-5,A; =- 3,x; = x, = 0. We choose min. A; (A in this case). Thus,
z canbe increased by taking x; in the basis. The method to determine the leaving vanable and also the new
values of x;, xg, A(l) A(z) corresponding to improved solution will be the same as for ordinary simplex
method. Thus, x4 w111 bethe departing variable. Herea=0 and B=1.

Starting Table
cj = 5 3 0 0
Ci- 5 2 0 0
Basic Var. Cp ca Xp X3 X3 x3(By) x4(B2) Min. ( xg/X, )
x 0 0 15 3 5 1 0 154
x4 0 0 10 2 0 1 1%
z(l)=chg +a=0 -5 -3 0 0 «-Aj(-l)
@ = Cpxp+B=1 . -5 -2 0 0 PR\
z=2Y/2%=0 -5 -3 - - “8
T {
First lteration Table
Introducing x, and dropping x4 (B,), we get the following table :
cj— 5 3 0
G- 5 2 0
 Basic Var. Cy cp Xz x1(B2) %) x3(B1) X4 Min. (xg/x7)
X3 0 0 9 0 19/5 1 -3/ 9/1%5 =49
X 5 5 2 1 2/5 0 1/5 2/Y¥=5
W =czxz=10 0 -1 0 1 4
(2)—ngg+B=ll 0 0 0 1 —a?
=21/2® =y, - ~-11 - 1 « A
1) {
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Second Iteration Table
Introducing x, and dropping x5 (B;), we get the following table :

= 5 3 0 0
G- 5 2 0 0
Basic Var. Cp cp Xp x1(B2) x2(B1) x3 x4 Min. (x5/x4)
X 2 3 Shy 0 1 9 - %o -
“x 5 5 LT 1 0 -y o %0/ %0
2 = cpxp + 0. = %9 0 0 e 1849 ‘—AJ('I)
1(2) = CBXB + B =20%9 0 0 0 1 - A](Z)
C 2=20/2P = 2356 - - 1045464 — U214, « 4
d T
Final Table
Introducing x; and removing x; (B,) we get the following table.
G— 5 3 0 0
Ci— 5 2 0 0
Basic Var. Cp cp Xg b ¢} x2(B1) x3 x4(B2)
X7 2 3 3 ¥ 1 % 0
X4 0 ] 4 195 0 -% 1
WV =cpxgta=9 - 165 0 ¥ 0 AP
2 =Cpxp+B=7 - 1% 0 % 0 AP
2=2"/P =9 % - % - «A;
Since all A; 2 0, we have reached the optimum solution : x; =0,x; =3, x4=4,Max.z= 9.
EXAMINATION PROBLEMS
Solva the following linear fractional programming problems :
2)(1 + 3X2 . - 3X| - X2
1. Max. z=————, subject to the constraints : 2. Max.z=—————, subjectto the constraints :
X+ X2 +7 X1 +2x%+5
3xy +5x2 515, 4%, + 332 < 12 and x;, x2 2 0. X1+ X21,24+3x22, and xy, %2 20.
2xy + 3x ) . . - X1 +2% .
. T e+ X0 + 4 : . =L, h nts :
3. Max.z Bt T+ d subjectto the constraints 4 Min. z Sx +3x+ 2 subject to the constrai
31+ 4, X+x2 S 1. and Xy, %20 3x1+6x; $8,5x+2x% <10 and x4, % 20.

§. Write short note on linear fractional programming.

e e




DynaAMIC PROGRAMMING

[ 33.1. INTRODUCTION |

Dynamic programming is a mathematical technique dealing with the optimization of multistage decision
process. The word ‘programming’ has been used in the mathematical sense of selecting an optimum allocation
of resources, and it is ‘dynamic’ as it is particularly useful for problems where decisions are taken at several
distinct stages, such as everyday or every week. Richard Bellman developed this technique in early 1950 and
invented its name. Dynamic programming can be given a more significant name as recursive optimization. In
dynamic programming, a large problem is splitted into small sub-problems each of them involving only a few
variables. This technique converts one problem of n variables into n sub-problems (stages), each in one
variable. The optimum solution is obtained in an orderly manner starting from one stage to the next, and is
completed till the final stage is reached. :

To convert a verbal problem into a multistage structure is not always simple, and sometimes it becomes
very difficult and even looks easy to apply. Recursion equations are of standard nature and its computer
program runs in a standard routine.

An important point is that—the problem of successive stages be treated separately even though by the
very nature of the problem these stages are dependent ? The answer of this question is based on ‘Bellman’s
Principle of Optimality’ which is stated in the following section.

Discrete and continuous, deterministic as well as probabilistic models can be solved by this method. Thus
dynamic programming method is very useful for solving various problems, such as inventory, replacement,
allocation, linear programming, etc. A single constraint problem is relatively simple, but in the problem of more
than two constraints more complexities appear.

(i) While solving the problem we use the concepts of stage and state. Moreover, the problem is solved stage by
stage and to ensure that suboptimal solution does not result, we cummulated the objective function value in a
particular way. Working backwards, for every stage, we found the decisions in that sfage that will allow us to reach
the final destination optimally, starting from each of the states of the stage. These decisions could be taken
optimally, without the knowledge of how we actually reach the different states. This has been stated as the
“‘principle of optimality in dynamic programming literature.”’

(ii) State : The variable that links up two stages is called a state variable. At any stage, the status of the problem
can be descibed by the values the state variable can take. These values are referred to as states.

(iii) Stage : The points at which decisions called for are referred to as stages. Each stage can be thought of
having a beginning and an end. The different stages come in a sequence, with the ending of a stage marking the
beginning of the immediately succeeding stage.

Q. Explain the concepts (not exeeding three sentenses for each) (a) Principle of optimality (b) state (c) stage.

33.2. DECISION TREE AND BELLMAN'S PRINCIPLE OF OPTIMALITY

Decision Tree. A multistage decision system, in which each
decision and state variable can take only finite number of
values, can be represented graphically by a ‘decision tree’.

In Fig. 33.1, circles representing nodes correspond to
stages and line between circles denoting arcs correspond to
the decisions. The node at the top of the tree is the starting Stage 3
node, and there are three possible decisions that can be made. Fig. 33.1

Stage 1

Stage 2
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This is represented by three arcs emanating from the node. Associated with each arc is a refurn and an output,
i.e., aresulting stage. These three nodes, in turn, represent input to next stage 2. Now, there are three ‘starting’
nodes and the same process is repeated. This process will continue until all stages are converted. A set of arcs,
which starts from node ‘start’ and end in the last stage, is a feasible path. The return from this path is the sum of
returns (or product of returns) from the arcs in the path. The objective is to find the path which yields
maximum return.

To find an optimal path, start with four input nodes at stage 3, and find an arc from each of them which
maximize the return. Take f3(x) as the return from this stage and Ds(x) as the decision when someone is in a
stage x, i.e., node x.

Now, consider a two-stage system consisting of stage 3 and 2 having three input nodes. Find optimal paths
and returns from each of these nodes to the end of stage 3. For example, consider a node at stage 2. There are
two arcs emerging from it and the out-put node is input for stage 3. From earlier calculations, optimal paths are
known from stage 3 to the top of 3. Thus, to find the optimal value for a given node, find an arc which
maximizes returns from the arc combined with the optimal return from the output node. Once, these are
calculated, the same concept could be extended to a three-stage system to determine optimal path from ‘start’
to the ‘end’ of decision tree. The fundamental concept is only to consider the optimal return from output nodes,
instead of considering returns that are not optimal, with respect to out-put nodes. Ideally, if an optimal solution
is obtained for a system, any portion of it must be optimal. This is called the ‘Bellman’s Principle of
Optimality’ on which the concept of dynamic programming is based.

Bellman’s Principle of Optimality : [Meerut (OR) 2003, 02; Kanpur 96; Raj. (M. Phil) 92, 91]
“An optimal policy (set of decisions) has the property that whatever the initial state and decisions are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the first
decision”.
Mathematically, this can be written as

fN(x) =max [r(dn) +fN— I{T(X ’ dn)}]

d,e {x}
where  fy(x) = the optimal return from an N-stage process when initial state is x
r(d,) = immediate return due to decisiond,
T(x,d,) = the transfer function which gives the resulting state

{x} = setof admissible decisions.
Consider the implication of this principle as a multistage decision problem. The problem which does not satisfy
the principle of optimality cannot be solved by the dynamic programming method.

Q. 1. State the ‘Principle of Optimality’ in dynamic programming and give a mathematical formulation of a dynamic
programming problem. [Meerut (Maths) 98, 91]

2. State and explain Beliman’sprincipte of optimality in dynamic programming.
[JNTU (B. Tech.) 2002; Meerut (Maths.) 99; Tamilnadue B.E. (Resource Man.) 97]

3. Explain Beliman'’s principle of optimality and give classical formulation and the dynamic programming formulation of any
problem. [Rajaesthan (M. Phil) 93]

[ 33.3. SOLUTION OF PROBLEM WITH FINITE NUMBER OF STAGES l

The solution of problems by dynamic programming is usually done in two stages :

(i) The development of functional equations for the problem.

(ii) To solve functional equations for determining the optimal policy.

Unlike linear programming, there does not exist a standard mathematical formulation of the dynamic
programming problem. This is a general type of approach to problem solving, and functional equations used must
be developed to fit the individual situation. Dynamic programming theory, however, develops the so called
‘functional equation approach’ which offers a unifying, but not fixed, format of expressing the decision problem
mathematically. This ability of deriving functional equations can probably be developed by an exposure to a wide
variety of dynamic programming applications and a study of characteristics which are common to all of these
situations. To understand, a large number of examples are presented in this chapter.
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[ 33.4. CONCEPT OF DYNAMIC PROGRAMMING

Consider an optimal sub-division problem where a positive quantity b is to be divided into n parts. The object
is to determine the optimum sub-division of b in order to maximize the product of n parts.

This problem can be solved by using the method of Lagrangian multipliers, but in more complicated
example, simultaneous equations resulting from the classical calculus aproach may be extremely difficult to
solve. Also the calculus approach cannot be applicable if non-differentiable functions are involved. If it is
possible to reformulate the n-variable problem as a series of n problems each in one variable, then
computational procedure is expected to be reduced to some extent.

The dynamic programming approach removes these difficulties by first breaking the problem into smaller

_sub-problems, and each sub-problem is referred to as a stage. A stage signifies a portion of the decision
problem for which a ‘separate’ decision can be taken. The resulting decision will also be meaningful if it is
optimal for the stage it represents and can be used directly as a part of the optimal solution to the problem. In
general, number of stages in a problem may be finite or infinite.

The computational efficiency of dynamic programming stems from the fact that the optimum solution can
be obtained by converting the problem into stages and then considering one stage at a time. For example, in an
inventory problem, there are some situations where a policy of producing each month to minimize the
inventory cost for the month immediately affected will minimize the inventory cost for the whole year.

In order to understand the step-by-step (iterative) procedure in dynamic programming, a few Dynamic
Programming Models are discussed in a systematic manner.

Q. 1. Explain a dynamic programming problem. {Meerut 2002]
2. Whatis dynamic programming and what sort of problems can be solved by it ? State and establish Beliman’s Principle of
Optimality.
3. State the principle of optimality in dynamic programming. Describe the basic features which characterize a dynamic
programming problem.

l 33.5. MODEL | : MINIMUM PATH PROBLEM

Example 1. Once upon a time there lived Mr. Banerjee in Bombay who decided to travel from Bombay to

Calcutta. In those days, stage-coach was the

only means of public transportation from

Bombay to Calcutta. His travel agent showed

him various stage coach routes at that time

available. Each block on the map presents a BOMBAY [1]

stage.
Since the travelling through hostile state 2

presented serious hazards, to life, Mr. Banerjee

decided to purchase an insurance policy. The

cost of policy depended upon the route he

selected : greater the danger, higher the cost. Fig. 33.2

Mr. Banerjee is a thrifty man and would like to

spend the minimum amount of money in his trip on insurance. Finding the minimum cost policy is a very

difficult problem for Mr. Banerjee, so he decided to call on his friend Mr. Bellman to see if he could help him.

After spending few days on this issue, Bellman came with the following solution procedure (Mr. Banerjee

insisted that he would like to see the calculations in detail).

Solution. Suppose,
£,(s) = minimum policy cost when he is in state s with n more stages to reach his final destination

- min [r(d") +fn— 1 {T(s ’ dn)}]

s

Sols)=0.

CALCUTTA
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Consider any stage, say n, where he has to make a decision. Now we can use backward recursive
approach. _ Decision, d,
In this example, f; (10) = O initially (forn = 0).
Forn=1, fi(s)= rr()iin [r(d,) + 0], where s = (8, 9).
i

Since, fi(8) = 3 (route 8 — 10) and fi(9) = Initial ____| | Resulting
4 (route 9 — 10), therefore for n=2,f(s)= T‘;? [r(dy) + Sttes state T(s, d,)
fi (resulting state)] where s =5, 6, 7 ; and
d=[5]->(5-8):6< Eg_g;;@"a'g)' Immediate
The data in a tabular form can be written as follows : retum 1)
Fig. 33.3
Table 33.1. (Forn=2)
Initial state Decision Immediate cost {(d,,)| Resulting state Optimal return from In(s) Optimal cost
K d, T(s,dy) resulting state : policy
Ja-1{T(s, dy)}
5 5—8 7 8 3 10* 5—8
6—8 3 8 3 6* 6—8
6 6—9 4 9 4 8
7 7—9 4 9 4 8* 7—9
Similarly, for n = 3, following table is obtained :
Table 33.2. (For n=3)
s d, r(dy) T(s , dp) o1 {T(s . dp)) o) Optimal policy
2 2—S5 10 5 10 20
2—6 12 6 6 12* 2—6
3 3—5 5 5 10 15
3—6 10 6 6 12* . 3—6
3—7 7 8 15
4 4—6 8] 6 6 12* 4—6
4—7 13 7 8 15

Forn=4,f4(s=1)= r{l{;? [r(d,) + f3 (resulting state)]

1—2=2+12=14x%
=min{ 1—3=5+12=17
—4=2+12=14%

Therefore, the minimum cost policies are 1-—2—6—8—10 and 1—4—6—8—10. The cost of each
policy is 14 units.

Ques. Banerjee has a friend R. Chawla. who lives in State 3. If Banerjee wants to visit him, how much
more would it cost to buy the insurance ?

To find out the new cost, one need not go through the whole calculations again. This information is
contained in the Tables. According to Bellman s principle, the optimal cost from State 3 to Calcutta is 12 units,
and the minimum cost of going to State 3 is 5 units. Therefore, it will cost 17 units. If Banerjee values that his
visit with Chawla is worth 2 units, should he visit him ?

In this Model, Mr. Bellman started his calculations from destination. Such a formulation is called the
backward formulation. In this particular instance, he could have started calculations from Bombay, i.e. from
the starting point. Then such a formulation is called the forward formulation. Depending upon the situation,
the formulation may be backward or forward. In many cases, the backward or forward formulation is
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predetermined by the problem itself. The main advantage of the forward formulation is that, if few more stages
are added in future, all previous calculations could be used.

Example 2. Find the shortest path from vertex A to vertex B along arcs joining various vertices lying
between A and B (Fig. 33.4). Length of each path is given.

j=0 j= }=

n
i}
w
[t}
>

Fig. 33.4

Solution. Step 1. Formulation. Divide vertices into five stages 0, 1, 2, 3 and 4 denoted by subscript j. For
J=0and j =4, there is only single vertex A and B, respectively. But, for j = 1, 2, 3 there are three vertices in each
stage. Each time one moves from stage j to stage j + 1, i.e. from any one vertex in stage j to any other vertex in stage
Jj+ 1

Each move will change the state of the system denoted by s;. Thus, 5 is the state in which the node A lies. Also,
so has only state value, say 5o = 1. State s, has only three possible values; say 1, 2, 3 corresponding to three vertices
in stage 2, and so on. Possible alternative paths from one stage to the other will be called decision variables denoted
by d; (the decision which takes from state s; _ ; to state s;). The return or the gain which obviously being the function

of decision will be denoted by fi(d;). Here d; can be identified with the length of the corresponding arc, and thus
simplify matters by considering fi(d)) = d;.

The minimum path from state s, to any vertex in state s; will be denoted by Fj(s;). For example, Fy(1) will
denote the minimum path from vertex A to vertex | in stage 2.

Now, the problem is to find the minimum path F(s,), and the values of decision variables d, , d, , d; and d;.

Step 2. To obtain functional equations. Start from vertex B backwards. Obviously, d4 can either be 3 or 9 or
8.1f dy =3, then 53 = 1. Similarly, dy =9 = 53 = 2; dy = 8 = 53 = 3. Hence the minimum path from A to B is either
through s3 = 1 or 2 or 3 according as dy is 3,9 or 8.

Thus, Fy(sq) = min {3 + Fy(1),9+ F3 2,8+ F3(3)] = n(}m [d4 + F3(s3)]

4

In a similar way,
Fy(1) =19+ Fy(1), 7+ F2(2)], F3(2) =[8+Fx(1),6 +Fy(2), 4+ F5(3)), F3(3) =[5+ Fx(2), 3+ F5(3)]
In general, Fa(s3) = n}in [ds + Fy(sp)], s3=1,2,3.
3
Similarly, Fy(sy) = n}iin [dy + Fi(s1)].
2

Finally, F(s;) = d;. The general recursion formula thus becomes
F:,(Sj) = lndin [dj + F}- 1 (Sj_ ])],j= 4, 3, 2, with Fl(S[) = dl‘
i

Step 3. Determination of the minimum path. Now, it is possible to determine F,(s4) recursively with the
help of the recursion formula by tabulating the information given in the problem as follows :

State s State 5,
d 7 6 5 dy 3 4 6 7 10
52
5 1 2 3 1 1 — 2 — —
2 — 1 — 2 3
3 — — —_ 2 3
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State 54

dy

83

dy
54

3

9

1

2

1

1

2

2

1

3

From these tables, it is concluded that a function of the form s;_; = yj(s; , dj) exists which is called the
stage transformation function. It is possible that s; _ | may not be defined for all combinations of s; and d;. Such
possibilities, where the transformation is not feasible, are indicated by a dash in above tables.

Now, recursive operations can be made by using recursive formulae as indicated in the following tables.

J s d Fi(s1)
1 1 7 * 7
2 6 6
3 5 5
Fi(s1) dy+ Fy (s1) Fy(s2)
J dy 3 4 6 7 10 3 4 6 7 10 Min.
52

2 1 7 — 6 — —_ 10 — 12 —_— — 10

2 — 7 — 6 5 — 1 — 13 15 11

3 — — — 6 5 —_— = — 13 15 13

Fy(s2) d3 + Fy(s;) F3(s3)
J dy 3 4 5 6 7 8 9 3 4 5 6 7 8 9 Min.
)
3 1 — — — — 11 — 10 —_ — —_ — 18 —_ 19 18
2 —_ 13 — 11 —_ 10 — — 17 — 17 — 18 — 17
3 B3 - 11 = = - —]1% - 16 - - - — 16
F3(s3) dy+ F3(s3) Fy(sq)
i ds 3 9 8 9 8 Min.
54
4 i 18 17 16 21 26 24 21

Thus, minimum path from A to B is obtained, i.e. fy(s4) = 21. By tracing the minimum path and decision
backwards (as indicated by numbers in bold type), successive distances are 7, 4, 7, 3 through the States
so=1,51=1,5p=2,s3=1andsg= 1.

Q. 1.

2,

Show how the functional equation technique of dynamic programming can be used to determine the shortest route when

itis constrained to pass through a set of specified nodes which is definite subset of the set of nodes of a given network.

decision problems.

State Bellman’s principle of optimality and explain by an illustrative example how it can be used to solve multistage

[Raj. Univ. (M. Phil) 90]

33.6.

MODEL II : SINGLE ADDITIVE CONSTRAINT, MULTIPLICATIVELY
SEPARABLE RETURN

n ' n
Consider the problem : To maximize z = 'l'Il f; (j), subjectto 21 a; yj=b,y;20, a;20.
j= j=
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First, introduce state variables, i.e. sji=Xajy;=b, Sj-1=8—4ay;,j=2,3,...,n.

n
Let Fj(sj)yz ;nax I;I Ji3)) , then the general recursion formula becomes
122550

I“j(sj)=myf§x BON Fioa G- ))j=nn-1,..,2
J

or Fi(s))=A00)-
Example 3. (Continuous Variables). Find the value of max (y, y; y3) subject to
Yi+y2+y3=55y1,¥2,y320. [UNTU (Mech. & Prod.) 2004; Kanpur 2000; 1AS (Maths.) 98]

Solution. Here the state variables are
$53=Y1tYt Y3, 2=53—y3=y1+ ), 5 ===y
Also, F3(s3) = max [y3 Fa(sy)], Fa(s) = max D2 Fi (s Fils)=y1=5-y
¥3 Y2

Hence, Fa(s;) = max [yz (s2 - y2)].
Y2
Using differential calculus to maximize y, (s, — y;) , we get y, = 5,/2.
Therefore, using the Bellman’s principle of optimality
Fy(s3) = max [y; s;'/4] = max [ys (s3 - y3)*/4]
Y3 Y3
Again, using calculus, we get y; = 53/3 =5/3.
Also, y; =5/3, y, =5/3 and hence max y,y,y; = 125/27.

Example 4. (Optimal Sub-division Problem). Divide a given quantity b into n parts so as to maximize
their product. Let f,(b) denote the value. Show that

Si(b) = b, and f(b) = omax, {zfu-1(b-2)}

Hence find f,(b) and the division that maximized it.
[Meerut (OR) 2003, 02; Delhi (Stat.) 95; I.A.S. (Math.) 94; Meerut 93]
Solution. In dynamic programming approach, there is sequential procedure to find the optimal policy
considering the last decision first and proceeding backward to the decision.

Step 1. To develop functional equations. Let y; be the ith part of b (i=1, 2, ..., n), and each i may be
regarded as a stage. Alternatives at each stage are infinite in this case, since y; may assume any non-negative
value which satisfies y) + y, + y3 + ... + y, = b. This means y; is continuous.

Also, let f,(b) denote the maximum attainable prouduct which depends on n (the number of parts into
which the quantity b is to be divided) because the quantity b is fixed. Thus f,(b) becomes a function of the
discrete variablen (n=1, 2, 3, ...).

Forn = 1, the result f{(b) = bis trivially true.

Now, consider the case for n = 2 in which the quatity b is divided into two parts, say y, = zand y, = b - z,

S fb) =max y;y, = max {z(b-2)} ..(33.4a)
0<z<b
Since b - z = fi(b — z) by the definition of f;. Therefore,
f(b) = oTax, {zf1(b - 2)} ...(33.4b)

Similarly, consider the case for n = 3. Take one of three parts as z leaving an amount (b — z) for further
division into two parts. By the definition of f, [from the equation (33.44)], the maximum attainable product

after dividing (b - z) into two parts is (b — z). So the conditional maximum product for b divided into three
parts (given the initial choice of z) is given by z/4(b - 7).
Then by the principle of optimality
fa(b) = o’l‘?i‘b{zfz(b"Z)} ..(33.5)
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Likewise, the functional equation for n = m is given by

Jm(b) = oPax  {2fn-1(b-2)) --(33.6)
<z<bh
Step 2. To solve functional equations for determining the optimal policy.
From the equation (33.4a), hHb) = 0 r<na)s( ) [z(b - 2)]
Sz

The function z(b — z) atteins its maximum value for z= 14 b satisfying the restriction 0 < z < b (using
differential calculus).

Now,forn=2,  Optimalpolicy : (V2 b, V5 b) and fo(b) = V4 b = (V4 b)* .(33.7)
Sincefy(b) = b°/4 , fo(b - 2) = (b — )*/4. Hence, the equation (33.5) becomes

_ (b—z)z}
f(b) = 0858s {z 4

in which ¢(z) = [z (b ~ 2)2/ 4] is known function of single variable z. The maximum value of [z b- 2)2/ 4]is
attained for z = b/3.

Since fy(b ~ 2) =fo(b — V3 b) =f,(¥3 b) = [(%3 b)*1/4 = (13 b, then for n = 3,

Optimal policy : (3b,15b,14b) and £, (b) = (15 b)* ..(33.8)

Further, suppose the optimal policy :
) (b/n,b/n,b/n, ... b/n); f,(b) = (b/n)" .{(33.9)
holds forn=2,3,4, ..., m, then it only remains to show that this result will also hold for n = m + 1, thereby

establishing the result by induction for general n.
Now, for n = m + 1, the functional equation becomes

Jm1(b) = Oggéb{me(b—z)} ..(33.10a)
but fu(b - z) = [(b ~ z)/m]" [from equation (33.9)], so
- b-zY
S+ 1(b) = osmféb {z( . ] } ...(33.10b)

— o\ m
inwhich F(z) =¢ [ bz J is again a known function of single variable z. The maximum value z [(b — z)/m]"™
m

is attained for z= b/ (m + 1)*, (see foot note).

b
Therefore, fm(b_z):-(bl;zj =[ Z-*-l] =(ml'7’r1]"
b b m b +1
fm+l(b)=(m+] )(m-{-l] =(m+l]"
b b b

Thus the optimal policy will be U el mt ]

Hence the result (7.9) is true for general n.

. * (b-zY" dF b-zY"" ' 1 b-z
Since F(2)=z m ,d—z_mz p —m]*( =
But dF/dz = 0 for maximum or minimum. Therefore,
m-1
b-2z _z+b_‘_£J=0
m m

which gives either z= bor z= b/(m+ 1).
2
. d°F. . __b
Further, it can be shown that 3—2— is negative for z= i
Therefore, maximum value of F(2) is attained for z= b/(m + 1) -
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Q. 1. State Bellman’s principle of optimality and use it to solve the problem : Max x;xx3 ... Xp, subjectto

X1+ Xp+Xa+...+Xp=c,and Xy, X2, X3, ..., Xp2 0.
2. What is Bellman's principle of optimality ? Apply this principle to divide a given quantity cinto n parts so as to maximize
their product. [Raj. Univ. (M. Phil) 91]

3. Use dynamic programming technique to solve the following problem :
Maximize z = x1X,X3Xs, Subject to the constraints :
X1+ Xp+ X3+ Xg =12, Xy, X2, X3, X4 2 0. [Tamilnadue B.E. (Resource Mangt.) 97]

n
4. Determine the maximum value of z=p, p> ... s, subjectto the constraints : Z ¢;p;<x,0< pi<1(i=1,2,... n)
i=1

(assume that ¢;> xfor all j). [IAS (Maths.) 96]

Example 5 (Discrete Variables). A Government space project is conducting research on a certain
engineering problem that must be solved before man can fly to moon safely.

These research teams are currently trying three different approaches for solving this problem. The
estimate has been made that, under present circumstances, the probability that the respective teams—call
them A, B and C—will not succeed are 0.40, 0.60 and 0.80, respectively. Thus the current probability that all
three teams will fail is (0.40) X (0.60) x (0.80) = 0.192. Since the objective is to minimize this probability, the
decision has been made to assign two or more top scientists among the three teams in order to lower it as much
. as possible.

The following table gives the estimated probability that the respective teams will fail when 0, 1 or 2
additional scientists are added to that team :

Team
A B C
Number of New 0 0.40 0.60 0.80
Scientists 1 0.20 0.40 0.50
2 0.15 0.20 0.30
How should the additional scientists be allocated to the team ? {Dethi (OR) 93}

Solution. In this problem, the research teams are corresponding to the stages in the dynamic programming

formulation.
Step 1. Formulation of the Problem. Let
s —>denote the number of new scientists still available for assignment at that stage.

xj —>the number of additional scientists allocated to team (stage j).
pj(x;) —denote the probability of failure for team jif it is assigned x; additional scientists as prescribed in

the table.
Then the formulation of the programming problem becomes :

Min z = p,(x)) pa(x2) p3(x3) , subject to the constraints
X +X2+X3=2 , and X1 ,X ,XgZO,

where x| , x3 , X3 are integers.
Step 2. To obtain the recursive equations :
Let f,(x;) be the value of the optimal allocation for teams 1 through j both inclusive.

Thus, forj =1, Hile) = {prx)}
If f(s , x;) be the probability associated with the optimum solutionf*(s) ,j=1,2, ..., n, then
f}(s . x,) =Pj(xj) X min [pj+ 1 (xj+ 1)Pj+2(xj+2) pj+3(xj+3)]
3
suchthat £ x;=s, and x; are non-negative integers,j = 1, 2, 3.

i=j
The recursive equations thus obtained are :

£ = f‘n<"1 fis,x) and fi(s,x)=pix) - fj+ 175 = x))
(<)



where

So,whenj =3,

%
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&)= min [pi() fi+1(s=x)1,j=1,2,3.

6= min pates).

Step 3. Solution of recursive equations :
The solution begins with f3*(s) and completes when f; *(s) is obtained.
Since all the quantities in the recurrence equation are discrete, the differential calculus method cannot be
used. Let the optimal policy be denoted by x;* , j =1, 2, 3. Now proceed backward from j = 3 for each stage

one by one.
Computations for One-Stage Problem (j=3)
s £ x3*
0 0.80 0
1 0.50 1
2 0.30 2
Computations for Two-Stage Problem (j= 2)
s, x2) = paled) f5* (s = x2) Optimum Sol.
*2 0 ! 2 £ x*
5
0 (0.60) (0.80)=0.48 0.48 0
1 (0.60) (0.50)=0.30 (0.40) (0.80)=0.32 0.30 0
2 (0.60) (0.30)=0.18 (0.40) (0.50)= 0.20 (0.20)(0.80)=0.16 0.16 2
Computations for Three-Stage Problem (j=1)
A, x)=pixa) f2* (s —x1) ' Optimum Sol.
X} 0 1 2 A% x*
3
(0.40) (0.48) = 0.48 ‘ 0.192 0
(0.40)(0.30)=0.120 | (0.20)(0.48)=0.096 0.096 1
(0.40) (0.16)=0.064 | (0.20)(0.30)= 0.060 (0.15) (0.48)=0.072 0.060 1

Therefore, optimum solution will have x;* = 1 making s = 1 at the second stage, so that x2* =0 making

s = 1 at the third stage, so that x3* = 1.

~

Hence, first and third terms should each receive one additional scientist. The new probability that all the
three teams will fail would then become 0.060.
Example 6 (Maximization Problem). A truck can carry a total of 10 tons of product. Three types of
product are available for shipment. Their weights and values are tabulated. Assuming that at least one of each

type must be shipped determine the loading which will maximize the total - -
value. Type Value (Rs.) | Weight(tons)
Solution. Since there are three types of units A, B and C to be 2 ig ;
loaded, it is a three stage problem. Let x; (7=1,2, 3) be the decision p pt 2
variable. Also, let fi(x;) be the amount of the optimal allocation for the
three products.
If f(s , x;) be the quantity associated with the optimum solution f*(s), = 1, 2, ... , n), then the recursive

equations are
fr&)= max fis.x) and f¥(s, %)= Oén%s[f’;(x;)ﬁn* (s=x)1.j=1,23,
;<

where Pj(x;) denotes the expected value obtained from allocation of x; tons of weight to the j-type product.
Now perform the following tabular computations :
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First Stage J=3)

x) 1 2 3 A% x*
|
2 1x60=60 — — 60 1
3 1 x 60=60 — —_ 60 1
4 60 2x60=120 —_ 120 2
5 60 2x60=120 — 120 2
6 60 120 3 x 60 = 180 180 3
7 60 120 IxX60=180 180 3
Second Stage (j=2) 4
x2 ! 2 3 £*6) x*
2
4 1(50) +60=110 —_ — 110 1
5 110 —_— — 110 1
6 50+ 120=170 2 (50) +60 =160 — 170 1
7 170 160 - 170 1
8 50 + 180 =230 100 + 120 =220 3(50)+60=210 230 1
9 230 100 + 120 = 220 150+ 60 =210 230 1
Third Stage (j=1)
X3 1 2 3 4 . 5 6 £ x3*
§3
100 1(20) +230 2(20)+230 3(20)+ 170 4200+ 170 5(0)+110 6(20)+ 110 270 2
=250 =270 =230 =250 =210 =200

Thus the optimal solution is given by x;* =3, x,* = 1 and x3* = 2 with f3*(s) = 270.
This answer interprets : product 3 tons of type A, one ton of type B and 2 tons of type C, must be shipped

to give the maximum value of Rs. 270. i w; v;
Example 7. (i) A ship is to be loaded with certain items. Each unit 1 5 4
of item i has a weight w; and a value v; (i =1, 2, 3,). The maximum 2 8 10
cargo weight permitted is W. Using the following table, determine the 3 3 6
most valuable cargo load which will not exceed the maximum i Wi v;
permissible weight, and W = 10. [Delhi (OR) 93] 1 495 220
(ii) Solve the above problem with the data and W = 1000. 2 500 750
Solution. Proceed as Example 6. 3 510 1012

I 33.7. MODEL lll : SINGLE ADDITIVE CONSTRAINT, ADDITIVELY SEPARABLE RETURN

Consider the problem in which the objective or return function z is an additively separable function of n
n
variables y; and f; (y)) is a function of y;. Find y;, 1 <j < n, which minimize z = ‘21 Ji ) subject to the
J =
constraints :
n
jz'l a;y;2 b, ajand b are real numbers, where g;20, y;20,5>0.

This is an n-stage problem where the suffix j indicates the stage. Since values of yj are to be decided, y; is

called decision variable. The return at the jth stage is the function £i(j). Thus, each decision y; is associated
with a return function fi(y)).
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Now introduce state variables so , S1 s S35 +++ » Sne
sp=ay+ay,+...+ay,2b
Sp_1=ay1tay,t ...+ 1 Yn-1=52"8n>
Sp—2=ay1trayst ... ¥y -2 Y¥n-2=Sn-1~Gn-1Yn-1

S| =apy) = 52— aya.
Also, si-1=Tj(sj,y),1<j<n
is the stage transformation function and indicates that each stage variable is a function of next state and
decision variables.
F,(s,) denotes the minimum value of z for any feasible value of s, where s, being the function of all
decision variables. Thus

Fy(sp) = min (101 +£02) + ... +fiOml s s 2 b.

Y1:Y2s 22 n
First, choose a particular value of y, and minimize z over the remaining n — 1 variables. Hence

n-1
Fy(sy) = miny . { jzl .ﬁ(yj)}=ﬁu(y")+pn—l(sn—l)

Y15 Y20 eee

' -1
Values of y; , ¥2, -.. » Ya—1 for which '721 f{y) is minimum keeping y, fixed thus depend upon s, - ; which in
] =

turn is a function of s, and y,. Therefore, the minimum over all y, for any feasible s, would now become
. Fu(s,) = l’l‘;ll‘l [fxOn) + Fr—y(sn - V]

If the value of F,,_ (s, _ 1) is known for all y,, the function to be minimized would involve only a single
variable y,. This minimization now becomes easy and can be done by simple methods. Similarly, the recursion
formulais

Fi(sj) = rr;in o)+ Fjoa(sj-D1, 1Sj<sn and Fy(s)) =f00-
J

Now starting with Fi(s;) and recursively optimizing to obtain Fy(s,), Fa(s3) , ... , we obtain Fy(s,) for
cach feasible s,. Each time optimization occurs over a single variable.
Example8. Minimizez = ylz + y22 + y32 subjecttoy; +y, +y3 215, and y;,y2,y320.
[Meerut 2005; JNTU (Mech. & Prod.) 2004; Agra 94)
Solution. Decision variables y; , 2 , 3 and stage variables sy , 52 , 53 are defined as

si=y;+y2+y3215 Fa(sa)‘-’";iﬂ # + Fasy)]
3
=Nty =5-¥ and Fis;) =min b7 + Fy(sy)]
2
S =Ye =50 F1(51)=){12=(32‘)’2)2
Thus Fys;) = min 2 + (52— )7
2

By calculus, y22 +(s2—y2)2 is minimum if its derivative with respect to y, is zero, ie.
2y,=2(s2-y2)=0
which gives y, = s,/2. Hence - Fy(sy) =53/2.
Now, Fy(s3) = n;in y? + Fy(s2)} = n;in 2+ (53— y3)°*/2]  (using Bellman'’s principle)
3 3

Again, using calculus, for minimum of the function of single variable y;, 2y;—(s3—y3)=0, or
y3 =53/3.
Hence, Fa(s3) =s7/3, 532 15.
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Since F3(s3) is minimum for s3 =15, the minimum value of y12+ y22+ y32 becomes 75, where
Y1=y2=y3=5.

Q.  Obtain the functional equations of dynamic programming for solving the problem :
Minimize df + d5 + df, subjectto dy + d, + dy= K, K> 0 and dy, b, 0y 2 0.

n n
Example 9. Use dynamic programming to show that -121 pilog p;, subject to _21 pi=1, is
= =

maximum, whenp, =p, =p;= ... = Pn=Va [Kanpur 2000; Agra 98; 97, 96; Rohilkhand 94, 93; Delhi (OR) 93;
Raj. Univ. (M. Phil.) 92; 1.A.S. (Main) 83]

Solution. This problem can be considered as to divide unity into n parts, p; , p, p3, ... , Ps , such that
the quantity p; log p; + p; log p, + p3 log p3 + ... + p,, log p, is minimum.

Let f,(1) denote the minimum attainable sum regarded as a function of discrete variable n (number of parts
into which the unity is to be divided). .

Forn=1, fill)=p;logp;=1log 1 (becausep, = 1only) ..(33.11)

Now consider the case for n=2 in which the unity is to be divided into two parts, say
pi=zandp;=1-z,then

L= 0212121 [pilogp, +pylogp,] or £, (1) = Oénzlgllz log z+ (1 —2) log (1 -2)]...(33.12a)

Since, fi(1 — z) = (1 - 2) log (1 - z) from the equation (33.11),
L= Orsnigl [zlog z+ £i(1 - 2)] ...(33.12b)
s

But, by simple calculus, it can be easily verified that the minimum value of the function
F(z) =zlog z + (1 ~2) log (1 - z) [from equation (33.12a)]
is attained for z = V4. Thus for n = 2, optimal policy is given by
Pi=py=V2 and f,(1)=2 (V2 log V2 - .(33.13)
Similarly for n = 3, take one of the three parts as z leaving an amount (1 - z) for further division into two
parts. Using Bellman’s principle of optimality
A()= min [zlogz+f, (1 -2)] ...(33.14a)
0<z<51
Since f(1) = 2 (V2 log 14) from equation (33.13), fy(1 — 2) = 2 (l-;—z] log 1—;—2
Hence the equation (33.14a) becomes

. 1-2z 1-2z
f3(1)-oxsnznsll[zlog2+2{ : )log : ] .(33.14b)

in which zlog z + 2 —];—z logl—;-§=

easily observed by differential calculus that minimum value of this function F(z) is attained for z= 1
satisfying the restriction0 <z < 1.

Since, H(1=-2)=£(1-W)y=f, (35) =2 (¥% log %) [from the equation (33.13)]
=15log 15+ s log V3.
Thus for n = 3, optimal policy is given by
pi=p2=p3=15 and f,(1) =3 (3 log 13 ..(33.15)

Further, suppose that the optimal policy py=p,=p3=...=p,=1/n for which
fD)=n[(1/n)log (1/n)]
holds forn=2, 3,4, ..., m. Then, it only remains to show that this result will also hold for n = m + 1, thus
establishing the result by induction for general value of n.

By the principle of optimality,

F(2), say, is a known function of a single variable z. Again, it can be
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Jus1 (D= 02“321 [zlog z+ f(1 - 2)]

- mi 1-z, 1-2z
02“:121 [zlogz+m( - log - )]

in which the function F(z) = z log z + (1 — z) log [(1 — z)/m] is again a function of a single variable z. The
minimum value of this function is attained for [z = 1/(m + 1)]*. .

Since, fm(l—z)=f,,,(—f"——)=m(_"1('"_+ﬂjlog(r_nﬁm_+12)
m+1 m m
=" 1 - 1 o 1 + 1 1 1 .
1 B T ma 1 el Tt 1 By T TS,
so the optimal policy forn=m+ 1 willbep; =ps=p3=... =pm41=1/(m+ 1) for which

fust(D=(m+1)[1/(m+1)log1/(m+1)]
Hence the result is true for n = m + 1 also.
Thus, the optimal policy p; = p, = p3 = ... = p, = 1/n will be true for general n.

EXAMINATION PROBLEM
1. Use dynamic programming to show that : x; log x; + Xz log Xz + ... + X, log X, subject to the constraints
Xy +Xp+...+X,=k and x20,i=1,2,...,n
is minimum when x; = X2 = ... = X, = k/n, where k> O is constant. [Delhl (MA/M.Sc. Il Maths.) 96}
2. Use dynamic programming to show that:
z=pqlog p1 + p210g p2 + ... + P l0g pn , Subject to the constraints :
p1+pa+..+pp=1; and p,20(y=12 .., nis minimum when py = p2 = ... = pp=— 1/n . [JNTU (MCA 1il) 2004]

Example 10. Use the principle of optimality to find the maximum value of
Z =b1x, + b2x2 +b3X3 + ... +b,,x,,

whenx; + X, + X3+ ... +Xp=cC,and Xy , X3, X3, «oo s ¥n 2 0,b,>0,b,>0,...., b, >0 . [Meerut (Maths) 97P, 90]

Solution. The problem can be considered as to divide the positive quantity c inton parts xy , X2, ... , X5 SO
that the expression byx; + bax + ... + bpx, is maximum. We assume thatb) < by < b3 < ...,<b,.

Let f,(¢) denote the maximum attainable sum of bix; + baxy + ... + bpxy,

Recursive Equations. If z;be the ithpart (i=1, 2,3, ... , n) of the quantity, then the recursive equations of
the problem are

f,(xl) = max {bl Z]} = blxl and f,-(x,~) = max {b,’Z,' +f,-_,(x,-—z,~)} ,i=1,2,...,n
=% 0sz;2x;

Solution of recursive equations. For one stage problem (i = 1), fi(x)) = bix;.

This gives fi(c) = byc (which is trivially true). :

For two stage problem (i = 1, 2)

filxy) = | max ' {byzy + fi(x2 — 22)}

23X
or file)= jmax {byz+filc-2)} = Olggéc{(brbl)ublc} forxy=c and 2=z

If b, — b, is positive, then this is maximum forz =c, otherwise it will be minimum.

'F(z);zlogz+(1—z)loglﬁ7—€
N dF _ 1 m( 1 1-2z
dz-zz+logz+(1-z)1_2(—m)+log———m -1
=0 for maximum or minimum
2

I 1 . doF. .
which gives, z= ma for which _d7 is negative.
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Thus, fHe)=b,c.
Similarly, for three stage problem (i = 1, 2, 3)

Sfilx3) = 0 s'?f’s‘x3 {baz3 + fr(x3 ~ 23)}

= byz + - = max {byz+byc—2)}= max {(bs—b,)z+b
or | fi(c) oJax {bsz + foc - 2)} N {b3z g(C 2)} oex {(b3 = by) 2+ byc}
Again, if by — b, is positive, then it gives maximum value for z = ¢, otherwise gives the minimum value.
Thus, fe)=bsc.
From the results of three stages 1, 2, 3 it can be easily shown by induction method that fu(c)=b,c.
Hence the optimal policy will be (0, 0,0 ... , x, = ¢) with f,(c) = b,c.
Now we shall give such example in which only integral values of decision variables are considered.
Example 11. A student has to take examination in three Course
courses X, Y, and Z. He has three days available for study. He : X Y z
Jfeels it would be best to devote a whole day to the study of the Study days
same course, so that he may study a course for one day, two days 0 1 2 1
or three days or not at all. His estimates of grades he may get by 1 2 2 2
study are as follows. 2 2 4 4
_ How should he plan to study so that he maximizes the sum of 3 4 s 4
his grades.

Solution. Let , , n, and n; be the number of days he should study the courses X, Y and Z, respectively. If

fi(ny) , fo(ny) , f5(n3) be the grades earned by such a study, then the problem becomes :

Maximize z =f; (n)) + £, (n;) + f; (n3) subject to n; + n, + ny <3 and integers.

Here, n; are the decision variables and fi(n;) are the corresponding return functions forj = 1, 2, 3.
Now, introducing state variables s;as follows :

S3=nm +n2+n353

s2=n]+n2 =8§S3—n3

S1=m =§—ny
Thus, state transformation functions are defined as

Si-1=Tys;,n),j=2,3.
Recursive equations applicable here are
Fis) = max [fi(m) + Fj_1(s5;-1)], and Fi(sy) =fi(ny),j=2,3
J

where Fa(s3) = max  [fi(n)) + fo(ny) + f3(n3)] for any feasible value of s;. Then the required sol%ion would
3

ny,ny,n

become max Fj(s3).
53

Recursive operations leading to the answer are tabulated as follows :

Stage returns f; (n) Stage transformation 8,1, /=2, 3
nj 0 1% 2 3 n; 0 1 2 3
J : Sj
1 1 2 4 0 0 — — —
2 2 2 4 5 1 1 0 — —
3 1 2 4 4 2 2 1 0 —
3 3 2 1 0
Recursive Operations
7)) Fiisp =fi(n) L(n) + Fi(s)) F(s)
ny 0 1 2 3 0 1 2 3 0* 1 2 3
2
oI - - - | = = = S
1 2 2 — — 2 1 — —_ 4 3 — — 4
2 2 2 4 — 2 2 1 — 4 4 5 — 5
3 2 2 4 5 4 2 2 1 6 4 6 6 6
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falna) ‘ Fa(s2) = folna) S3(m) + Fa(s2) F(s3)
ns 0 1 2 3 0 1 2 3 4] 1 2* 3
0 1 — _ — 3 — — — 4 —_ — — 4
l 1 2 —_ — 4 3 — — 5 5 — —_ . 5
2 1 2 4 —_ 5 4 3 — 6 6 7 —_ 7
3 1 2 4 6 5 41 3 7 7 7

Proceeding backwards through enclosed type numbers, the optimal policy is obtained as
ny=2,n3=0, n; = 1, keeping in view n; +ny + n3 < 3. The required maximum return is 8.

Example 12. State the principle of optimality and apply it to solve the following problems ;

(a) A member of a certain political party is making plans for his election to the parliament. He has
received the service of six volunteer workers and wishes to assign them to three districts in such a way as to
maximize their effectiveness. He feels that it would be inefficient to assign a worker to more than one district
but he is willing to assign no worker to any one of the district if they can accomplish in other districts.

The following table gives the estimated increase in the number of votes in his favour in each district if it

were allocated various number of workers :

Number of workers Districts

1 ) 2 ) 3
0 0 0 0
1 25 20 33
2 42 38 43
3 55 54 47
4 63 65 50
5 69 73 52
6 74 80 53

How many of the six workers should be assigned to each of the three districts in order to maximize total

estimated increase in the number of votes in his favour. [LI.LE. (Grad.) 91]

(b) Solve the above problem by adding one more column for 4th district as
0 13 24 32 39 45 50.

Solution. Let the three districts be taken as three stages in a dynamic programming formulation.

Step 1. Formulation of the problem :
Letx; — number of workers at the jth stage from the previous one, wherej = 1,2,3.

Vi{(x;) — expected number of votes when x; workers are assigned to jth disirict.
Then the problem can be formulated as a linear programming problem :
Maximize z = V;(x;) + Va(xp) + V3(x3) , subject to the constraints
Xy +X2+X3=6 and X1 ,XZ,X3_>.0.

Step 2. To obtain the recurrence relation : v _
Let there be s workers available for remaining j districts and x; be the initial assignment. Define fi(x;) as the

value of the optimal assignment for district 1 through 3 both inclusive. Thus for stagej = 1,
‘ fils,x) = {Vi(x)}.
If fi(s , xj) be the profit associated with the optimum solution f;*(s), j =1, 2, 3, then
* = V
hi*(®) 0 g}gxs s[ 1(:1)]

The recurrence relation thus obtained is
£i(s,x)=V; () +fjs1 (s —x), forj= 1,2,3

and f* = jmax 1V @)+ * - %)
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Step 3. Solution of the problem :

. . . . Computations for one-stage probl
Now the solution to this problem starts with £:*(s) and is TpiTations foro 9° problem

completed when f,*(s) is obtained. Since all the values in the - : 56 5t
recurrence relation are discrete, tabular method will be used. ? 303 (1’
The optimal policy is denoted byx*,j=1,2,3. 2 43 2
From this computation table it is evident that the 3 47 3
maximum increase in the number of votes is 129. The ; 55)‘2) ‘5‘
optimum solution is x;* = 2 which makes s = 6 — 2 = 4 for two - 6 53 6
stage problem. Hence x,* =3 which makes s=4-3=1. It
givesx;* =1,
Computations for Two-Stage Problem
- J2(s, x2) = Vaxp) + fa(s ~ x3) Optimum Sol.
X2 0 1 2 3 4 5 6 L' | x
5
0 0+0=0 0 0
1 0+33=33 | 20+0=20 33 0
2 0+43=43 | 204+33=53 | 38+0=38 53 1
3 0+47=47 | 20+43=63 | 38+33=71 | 5440=54 m 2
4 0+50=50 | 20+47=67 | 38+43=81 | 54+33=87 | 65+0=65 87 3
5 0+52=52 | 20+50=70 | 38+47=85 | 54+43=97 | 65+33=98 | 73+0=73 98 4
6 0+53=53 | 20+52=72 | 38+50=88 |54+47=101|65+43=108 | 73+ 33= 106 80+0=80 | 108 | 4
Computations for Three-Stage Problem
Sils, x1) = Vi(x) + fo(s ~ xy) Optimum Sol.
xi 0 1 2 3 4 5 6 ORI
s
6 ]0+108=108 | 25+98=123 | 42+87=129 | 55+71=126 | 63+ 53 =116 | 69+ 33 = 102 74+0=74 | 129 | 2
Finally, the optimum solution is obtained Optimum Distribution of 6 Workers to 3 Districts
and the maximum increase in the number of votes = 129, o o "
(b) Repeat above procedure with 4th district. 5 3 "
Example 13. Seven units of capital can be invested
in four activities with the return from each activity Q PR () 22 (Q) 22 (Q) P ()
given in the accompanying table. Find the allocation of 0 0 0 0 0
capital to each activity that will maximize the total 1 2 3 2 1
return. 2 4 5 3 3
Solution. Step 1. Formulation of the problem : 3 f, ;’ ; Z
Let us consider four activities as four stages. The 5 8 10 5 7
decision variable x; (j =1, 2, 3, 4) denotes the number 6 9 11 s 8
of units which can be invested at the jth stage. 7 9 12 8 8

Now let Ri(x;) be the expected return from the allocation of X;j units to activity j. Then, the problem can be
formulated as a linear programming problem :

Max z = R (x;) + Ry(x,) + R;(x3) + Ry(x4), subject to the constraints :
Xi+xX+x3+x4=7, andeZO,_,v= 1,2, 3,4.
Step 2. To obtain the recurrence relationship :

Let there be s units available for remaining j activities and x; be the initial allocation. If fj(x;) defines the
value of the optimum allocation for four activities, then the recurrence relation becomes
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Si(s, x)) = {R, (x1)} , which implies f;*(s) = max {Ry(xp)}
. 0sx<s
and 55 = ;n%aés {Ri(x) +fie1*(-x)}j=1,2,3,4.

Step 3. Solution of the problem :

The solution to this problem starts with f,*(s) and is completed when f,*(s) is obtained.
Computations for one-stage problem

5 fa*(s) x4*
3 5 3
4 6 4
5 7 5
6 8 6
7 8 6or7
Computations for two-stage problem
X3 0 1 2 3 4 5 6 7 f?‘#(s) xa*
5
0 0+0 0 0
1 0+1 2+0 2 1
2 0+3 241 340 3 0,1,2
3 0+5 2+3 3+1 440 5 0,1
4 0+6 2+5 3+3 4+1 5+0 7 1
5 0+7 2+6 3+5 4+3 5+1 5+0 8 1,2
6 0+8 247 3+6 4+5 5+3 5+1 5+0 9 1,23
7 0+8 2+8 3+7 4+6 5+S 5+3 5+1 5+0 10 1,2,3,4
Computations for three-stage problem
x 0 1 2 3 4 5 6 7 £ () x*
5
0 0+0 0 0
1 0+2 340 3 1
2 0+3 3+2 5+0 5 L2
3 0+5 3+3 5+2 7+0 7 2,3
4 0+7 3+5 5+3 7+2 9+0 9 3,4
5 0+8 3+7 5+5 7+3 9+2 10+0 11 4
6 0+9 3+8 5+7 7+5 9+3 10+2 1140 12 2,3,4,5
7 0+10 3+9 5+8 7+7 9+5 10+3 11+2 12+0 14 3,4
Computations for four-stage problem
Xy 0 1 2 3 4 5 6 7 fi*(® x*
s
7 0+14=14|2+12=14|4+11=15[6+9=15[7+7=14[8+5=13 | 9+3=12| 9+0=9 15 2,3

From this table maximum profit is obtained as 15. The optimum solution is x,* =2 or 3, which gives
s=7-2=5 or s=7-3=4 for three stage problem. Hence x,* =4 when x;* =2, and x,* =3 or 4 when
x*=3;x*=4 gives s=5-4=1, which gives x3*=1;x*=3 gives x;*=0. Further, x;*=1 makes
s=1-1=0which gives x4* = 0, and x3* = 0 makes s = 0 — 0 which gives x,* = 0.

Finally, following three alternative optimum solutions are obtained such that sum of each row must be 7 :

g'©@ £(Q) £© £ ©
2 4 1 0
3 3 1 0
3 ‘ 4 0 0

and the maximum return is 15.
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Example 14. (Production Allocation Problem). The owner of a chain of four grocery stores has
purchased six crates of fresh strawberries. The estimated
probability distribution of potential sales of the strawberries

5
LY

crates between stores. However, he is willing to distribute zero
crates to any of his stores.
Find the allocation of six crates to four stores as to
maximize the expected profit.
Solution. Let the four stores be considered as four stages.
Step 1. Formulation of the problem :
Letx; —snumber of crates allocated at the jth stage,j =1, 2, 3,4.
P; (x;) —expected profit from allocation of x; crates to store j.
Now the problem can be formulated as a linear programming problem as follows :
Max z = P,(x;)) + Pa(x3) + P3(x3) + Pa(xs) subject to the constraints :

before spoilage differ among the four stores. The following 1 2 3 4
table gives the estimated total expected profit at each store, o o o 0
when it is allocated various number of crates. Numbe z i g ;
For administrative reasons, the owner does not wish to split Cm‘;of 7 6 8 4

7 8 8 4

7 9 8 4

7 10 8 4

A bW - O

X+ X+ X3 +xs=6and x;, X, %3,%20.
Step 2. To obtain the recurrence relations :
Let there be s crates available for remaining j stores and x; be the initial allocation. Define fi(x;) as the value of
the optimal allocation for stores 1 through 4 both inclusive. Therefore, for stage j = 1,

fils ,xp) = {Pi(x)}
If fi(s , x;) denotes the profit associated with the optimum solutionf* (s) =1, 2,3, 4),then

*(s)= max {Pi(x

@)= 1 {Pi(x)}

x<s
Therefore, the recurrence relation is obtained as
fls, ) =Px)+fi* (s-x),j=1,2,3,4
and 0= gmax - (PE) 46 =5

Step 3. Solution of the problem :

The solution to this problem can be started with f+*(s) and is completed when f; *(s) is determined.
Computations for first stage problem

s 0] 2
0 0 0
1 2 1
2 3 2
3 4 3
4 4 3,4
5 : 4 3,4,5
6 ; 4 3,4,5,6
Computations for second stage problem
Fls . x3) = Palx) + £ (s = %3) Optimum Sol.
X3 0 | 2 3 4 5 6 f3*(s) x3*
s
0 0+0 0 0
1 0+2 6+0 6 ~ 1
2 0+3 6+2 8+0 8 1,2
3 0+4 6+3 8+2 8+0 10 2
4 0+4 6+4 8+3 8+2 8+0 11 2
5 0+4 6+4 8+4 8+3 8+2 8+0 12 2
6 0+4 6+4 8+4 8+4 8+3 §+2 8+0 12 2,3
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Computations for third-stage problem

Sals  x2) = Pa(xa) + f3*(s ~ x3) “Optimum Sol.
X3 0 ] 2 3 4 5 6 £2*(s) x*
5 .
0 0+0 0 0
1 0+6 240 6 1
2 0+8 2+6 440 8 0,1
3 0+10 2+8 446 6+0 10 0,1,2
4 0+11 2+10 4+8 6+6 8+0 12 1,2,3
5 0+ 12 2+11 4+10 6+8 8+6 9+0 : 14 2,3,4
6 _0+12 2+12 4+11 6+ 10 8+8 946 10+ 0 16 3,4
Computations for fourth-stage problem
Sils  x0) = Pi(en) + (s — x) Optimum Sol.
X 0 ! 2 3 4 5 6 fi*(s) 0*
5 . . .
6 O+16=16 [4+14=18 | 6+12=18 | 7+ 10=17 7+18=15] 7+6=13 7+0=7 18 1,2

From above computations, it is observed that the maximum profit of Rs. 18 can be obtained by choosing
the following eight alternative solutions such that sum of each row must be 6 : .
: : Distribution on 6 Crates to 4 Stores

Store | Store 2 Store 3 Store 4

* x* : x3* x4t

K

BN N v o e

W NN = pwwN
— 00— 0D = N = N
C O = - = -

N

This solution may also be obtained by careful inspection of the given data but, in general, it is not so obvious.

Example 15. The profit associated with each of the Jour activities as a function of the man-hours allocated to
each activity is given in the following table. If man-hours are available each day, how should allocation of time be
made so that the profit per day is maximized ?

H: 0 1 2 3 4 5 6 7 8
g (H): 0’ 1 3 6 9 12 14 15 16
S 0 2 5 8 )| 13 15 16 17
& 0 3 7 10 12 13 13 13 13
g 0 5 5 8 10 10 12 13 14

Use dynamic programming technique to solve the above problem ? _
-Solution. Let the four activities be considered as stages of dynamic programming problem.
Step 1. Formulation of the problem. The decision variable x(j=1,2,3,4) will denote the number of
man-hours available at the jth stage. If P(x;) denotes the profit from the allocation of x; hours to jth activity, then the
problem becomes : Max z = P\ (x;) + Py(xp) + P3(x3) + Py(xy), subject to- the constraints

Xy +XZ+X3+X4;8 and X)ZO;]= ],2,3,4.

This problem is similar to previous one. So proceeding in the same way, it can be verified that maximum profit
is 23 which can be achieved by choosing any of the following alternative optimum solutions :

g' H) : 0 0 0 0 0 0 0
gz H) : 2 3 3 4 4 4 5
33 H) : 3 2 3 3 2 4 3
g4 H : 3 3 2 1 2 0 (]
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EXAMINATION PROBLEMS

1. Obtain the functional equation for maximizing z = gy (X1) + g2 (%) + ... + gn(Xp). subject to
X+ X+ ...+ Xp=candx20,j=1,2,3,...,n.

[Ans.  f(0) = Max 6{91(2)) =gi(0), i(0) = o e 0{91(2) +fh-y(c- 2}

2. (a) Obtain the functional equations of dynamic programming for solving the problem :

n n
min Z i, . @>0, subjectto I, i 2a,a20;020;(=12,...,n

[Hint. Divide aintonpants 1, &2, ... , fysothat i + /5 + /5 + ... + 1 is minimum]
(b) W a=2and n=3, whatwill be the functional equation ?

N
3. Let us define the function fy(a) = m';n i§1 x,-P , p> 0, where Ris defined by

N
(i) i2:1 x<a a>0, (i) ;20 forall i
(a) Show that fy(a) satisfies the recursive relation
fu(@) = min 61[xP+ fy-1(@a-x], N22, and fa) =a”,

(b) Provethatif0<p<1; fiMa)=a’,
(c) Provethatifp>1; fy(8)=N(a/N)*~ " [Meerut (Math.) Jan. 98 BP]

33.8. MODEL IV : SINGLE MULTIPLICATIVE CONSTRAINT, ADDITIVELY
SEPARABLE RETURN

Consider the problem : Minimize z = fi(y1) +£2(02) + ... +fa(yn) subject to the constraints
Y12 .- Ya2p,p20,y;20forallj.
State variables are defined as ,
Sn=Yn¥n-1 - Y1 2P
Sn-1=5/Yn=Yn-1Yn-2--- Y1

52 =53/y3 =y
51 =8/Y2= N ‘
These state variables are stage transformations of the type sj_ 1 = Tj(s; , ;) -
Let F(s,) be the minimum value of the objective function for any feasible s,,. Thus, proceeding as earlier
~ obtain the recursion formula
filsj) = myin Ui + Fj-i(sj-0D1,25jsn
’ )

which will lead to the required situation.

Example 16. Use Bellman’s principle of optimality to minimize 2=y, + Y+ ... + Yo subject to the
constraints :

Y2 ... yn=d,y20forj=1,2,...,n
{Agra 96; Delhi (OR) 93; Meerut (Maths.) 93P, 1.A.S. (Maths.) 92; Raj. Univ. (M. Phil) 80]

Solution. Let f,(d) denote the minimum attainable sum y; +y2+y3+ ... +¥n when the quantity d is
factorized into n factors.

For n = 1, dis factorized into one factor only, so fi(d) = Inirz {»1}=d.

n=

For n =2, dis factorized into two factors y; , ya.
If y; =z and y, =d/z ,then
fdy=min {yi+y}= min (z+d/z}= min [z+fi(d/2)}  [sincefi(d/z)=d/z]



